Advertisement

Reliable Condition Monitoring of Telecommunication Services with Time-Varying Load Characteristic

  • Günter Fahrnberger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10722)

Abstract

In general, SLAs (Service-Level Agreements) between TSPs (Telecommunication Service Providers) and their computer system vendors contain grants of penalty demands on the vendors in case of SLA violations. Occasionally, TSPs also cede such rights to their customers. In this case, TSPs behave wisely if they install CMSs (Condition Monitoring Systems) that nonstop supervise all significant KPIs (Key Performance Indicators) of their services and red-flag noticeable service problems. Scientists have researched a variety of concepts for CMSs with machined dynamic thresholds, for instance, to take the material aging of rotary machines into account. Nary such a concept deftly copes with time-based volatility, e.g. telecommunication services that show time-varying load characteristic. This disquisition fills this gap by presenting the requirements, the architecture, and the reliability analysis for an applicable CMS (Condition Monitoring System).

Keywords

CM CMS Condition Monitoring Condition Monitoring System Icinga Measurement Monitoring Nagios Prediction Supervision Surveillance 

Notes

Acknowledgments

Many thanks to Bettina Baumgartner from the University of Vienna for proofreading this paper!

References

  1. 1.
    Agarwal, D., Kishor, N., Raghuvanshi, A.S.: Flexible threshold selection and fault prediction method for health monitoring of offshore wind farm. IET Wirel. Sens. Syst. 5, 183–192 (2015).  https://doi.org/10.1049/iet-wss.2014.0008 CrossRefGoogle Scholar
  2. 2.
    Beyaz, S.: Konzeption, Einführung und Integration eines Monitoringsystems in bestehende Netzwerkdienste in einer Krankenhausumgebung. Ph.D. thesis, University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany, June 2010. https://opus4.kobv.de/opus4-fau/files/1260/Dissertation_Beyaz.pdf
  3. 3.
    Brooks, R., Thorpe, R., Wilson, J.: A new method for defining and managing process alarms and for correcting process operation when an alarm occurs. J. Hazard. Mater. 115(1–3), 169–174 (2004).  https://doi.org/10.1016/j.jhazmat.2004.05.040 CrossRefGoogle Scholar
  4. 4.
    Case, J.D., Fedor, M., Schoffstall, M.L., Davin, J.R.: A simple network management protocol (SNMP). RFC 1157 (Historic), May 1990. https://www.ietf.org/rfc/rfc1157.txt
  5. 5.
    Chen, J., Wan, Z., Pan, J., Zi, Y., Wang, Y., Chen, B., Sun, H., Yuan, J., He, Z.: Customized maximal-overlap multiwavelet denoising with data-driven group threshold for condition monitoring of rolling mill drivetrain. Mech. Syst. Sign. Process. 6869, 44–67 (2016).  https://doi.org/10.1016/j.ymssp.2015.07.022 CrossRefGoogle Scholar
  6. 6.
    Dolenc, B., Boškoski, P., Juričić, Ð.: Robust information indices for diagnosing mechanical drives under non-stationary operating conditions. In: Chaari, F., Zimroz, R., Bartelmus, W., Haddar, M. (eds.) Advances in Condition Monitoring of Machinery in Non-stationary Operations. ACM, vol. 4, pp. 139–149. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-20463-5_11 CrossRefGoogle Scholar
  7. 7.
    Gray, J., Siewiorek, D.P.: High-availability computer systems. Computer 24(9), 39–48 (1991).  https://doi.org/10.1109/2.84898 CrossRefGoogle Scholar
  8. 8.
    International Telecommunication Union: X.700: Management framework for open systems interconnection (OSI) for CCITT applications, September 1992. https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.700-199209-I!!PDF-E
  9. 9.
    Jabłoński, A., Barszcz, T., Bielecka, M., Breuhaus, P.: Modeling of probability distribution functions for automatic threshold calculation in condition monitoring systems. Measurement 46(1), 727–738 (2013).  https://doi.org/10.1016/j.measurement.2012.09.011 CrossRefGoogle Scholar
  10. 10.
    Juričić, Ð., Kocare, N., Boškoski, P.: On optimal threshold selection for condition monitoring. In: Chaari, F., Zimroz, R., Bartelmus, W., Haddar, M. (eds.) Advances in Condition Monitoring of Machinery in Non-stationary Operations. ACM, vol. 4, pp. 237–249. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-20463-5_18 CrossRefGoogle Scholar
  11. 11.
    Kearney, K.T., Torelli, F.: The SLA model. In: Wieder, P., Butler, J., Theilmann, W., Yahyapour, R. (eds.) Service Level Agreements for Cloud Computing, pp. 43–67. Springer, New York (2011).  https://doi.org/10.1007/978-1-4614-1614-2_4 CrossRefGoogle Scholar
  12. 12.
    Kocare, N., Juričić, D., Boškoski, P.: Optimal threshold selection in condition monitoring based on probability of false alarm. In: 23rd International Electrotechnical and Computer Science Conference ERK 2014, pp. 175–178, September 2014. http://erk.fe.uni-lj.si/2014/kocare(optimal)p.pdf
  13. 13.
    Marhadi, K.S., Skrimpas, G.A.: Using Johnson distribution for automatic threshold setting in wind turbine condition monitoring system. In: Annual Conference of the PHM Society (PHM), vol. 5, pp. 1–13, October 2014. https://www.phmsociety.org/node/1395
  14. 14.
    Marhadi, K.S., Skrimpas, G.A.: Automatic threshold setting and its uncertainty quantification in wind turbine condition monitoring system. Int. J. Prognostics Health Manage. 6(Special Issue Uncertainty in PHM), 1–15 (2015). https://www.phmsociety.org/node/1571 Google Scholar
  15. 15.
    Pukelsheim, F.: The three sigma rule. Am. Stat. 48(2), 88–91 (1994).  https://doi.org/10.2307/2684253 MathSciNetGoogle Scholar
  16. 16.
    Straczkiewicz, M., Barszcz, T., Jabłoński, A.: Detection and classification of alarm threshold violations in condition monitoring systems working in highly varying operational conditions. J. Phys: Conf. Ser. 628(1), 1–8 (2015).  https://doi.org/10.1088/1742-6596/628/1/012087 Google Scholar
  17. 17.
    Terry, D.B., Painter, M., Riggle, D.W., Zhou, S.: The Berkeley internet name domain server. Technical report, EECS Department, University of California, Berkeley, CA, USA, May 1984. https://www2.eecs.berkeley.edu/Pubs/TechRpts/1984/CSD-84-182.pdf
  18. 18.
    Yan, H.C., Zhou, J.H., Pang, C.K.: Cost optimization on warning threshold and non-fixed periodic inspection intervals for machine degradation monitoring. In: IECON 2015–41st Annual Conference of the IEEE Industrial Electronics Society, pp. 1079–1084, November 2015.  https://doi.org/10.1109/IECON.2015.7392243

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of HagenHagenGermany

Personalised recommendations