Advertisement

Properties and Exact Solution Approaches for the Minimum Cost Dominating Tree Problem

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10722)

Abstract

The problem under consideration is called the minimum cost dominating tree problem [6]. It arises in the context of wireless mobile communication, when building a virtual backbone is required.

References

  1. 1.
    Adasme, P., Andrade, R., Lisser, A.: Minimum cost dominating tree sensor networks under probabilistic constraints. Comput. Netw. 112, 208–222 (2017)CrossRefGoogle Scholar
  2. 2.
    Cheriyan, J., Ravi, R.: Lecture notes on approximation algorithms for network problems (1998). http://www.math.uwaterloo.ca/jcheriya/lecnotes.html
  3. 3.
    Méndez-Díaz, I., Zabala, P.: A cutting plane algorithm for graph coloring. Discret. Appl. Math. 156, 159–179 (2008)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Magnanti, T.L., Wolsey, L.A.: Optimal trees. In: Ball, M., Magnanti, M.L., Monma, C.L., Nemhauser, G.L. (eds.) Network Models. Handbooks in Operations Research and Management Science, vol. 7, pp. 503–615. North-Holland, Amsterdam (1995)CrossRefGoogle Scholar
  5. 5.
    Puchinger, J., Raidl, G.R., Pirkwieser, S.: MetaBoosting: enhancing integer programming techniques by metaheuristics. In: Maniezzo, V., Stützle, T., Voß, S. (eds.) Matheuristics: Hybridizing Metaheuristics and Mathematical Programming. AOIS, vol. 10, pp. 71–102. Springer, Boston (2010).  https://doi.org/10.1007/978-1-4419-1306-7_3 CrossRefGoogle Scholar
  6. 6.
    Schin, I., Shen, Y., Thai, M.: On approximation of dominating tree in wireless sensor networks. Optim. Lett. 4, 393–403 (2010)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Sundar, S., Singh, A.: New heuristic approaches for the dominating tree problem. Appl. Soft Comput. 13, 4695–4703 (2013)CrossRefGoogle Scholar
  8. 8.
    Wolsey, L.: Integer Programming. Wiley, New York (1998)MATHGoogle Scholar
  9. 9.
    Chaurasia, S.N., Singh, A.: A hybrid heuristic for dominating tree problem. Soft Comput. 20, 377–397 (2016)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.LERIAUniversité d’AngersAngersFrance
  2. 2.School of Computer and Information SciencesUniversity of HyderabadHyderabadIndia
  3. 3.National Institute of TechnologyRaipurIndia

Personalised recommendations