Skip to main content

Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Application Perspectives

  • Conference paper
  • First Online:
Magnesium Technology 2018 (TMS 2018)

Abstract

In recent years, Mg alloys have made inroads into applications for transport industries. The favorable property profile of Mg promotes increased usage. Despite magnesium alloys being used for years, there is still a lack of knowledge about the potential of Mg alloys. New or optimized alloys and processes are creating new ideas for substituting traditional materials. High-pressure die-casting (HPDC) is the predominant technology, while other casting and wrought processes are of secondary importance. Developments in the last decade have led to an improvement of the property profile and effectiveness of magnesium wrought alloys. Additive manufacturing has opened new opportunities for tailoring of the property profile and functionality. In addition, Mg as material for battery anodes adds a new field of application in the energy sector. This presentation will provide an overview of the status of modern process and alloy development, and discuss the challenges to extending the use of magnesium alloys in various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Friedrich and S. Schumann: Research for a “new age of magnesium” in the automotive industry; J. Mater. Process. Tech. 117 (2001) 276–281.

    Google Scholar 

  2. C.E. Dreyer, W.V. Chiu, R.H. Wagoner, S.R. Agnew: Formability of a more randomly textured magnesium alloy sheet: Application of an improved warm sheet formability test; J. Mat. Proc. Techn. 210 (2010) 37–47.

    Google Scholar 

  3. L. Stutz, J. Bohlen, G. Kurz, D. Letzig, K.U. Kainer: Influence of the Processing of Magnesium Alloys AZ31 and ZE10 on the Sheet Formability at Elevated Temperature; Key Eng. Mater. 473 (2011) 335–342.

    Google Scholar 

  4. J. Bohlen, M.R. Nürnberg, J.W. Senn, D. Letzig, S.R. Agnew: The texture and anisotropy of magnesium-zinc-rare earth alloy sheets; Acta Materialia 55 (2007) 2101–2112.

    Google Scholar 

  5. L.W.F. Mackenzie, M.O. Pekguleryuz: The recrystallization and texture of magnesium–zinc–cerium alloys; Scripta Materialia 59 (2008) 665–668.

    Google Scholar 

  6. A. Styczynski, C. Hartig, J. Bohlen, D. Letzig: Cold rolling textures in AZ31 wrought magnesium alloy; Scripta Materialia 50 (2004) 943–947.

    Google Scholar 

  7. S.R. Agnew, M.H. Yoo, C.N. Tomé: Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y; Acta Materialia 49 (2001) 4277–4289.

    Google Scholar 

  8. N. Stanford, M.R. Barnett: The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility; Mater. Sci. Eng. A 496 (2008) 399–408.

    Google Scholar 

  9. T. Al-Samman, X. Li: Sheet texture modification in magnesium-based alloys by selective rare earth alloying; Mater. Sci. Eng. A528 (2011) 3809–3820.

    Google Scholar 

  10. N. Stanford: The effect of rare earth elements on the behaviour of magnesium-based alloys: Part 2—recrystallisation and texture development; Mater. Sci. Eng. A565 (2013) 469–475.

    Google Scholar 

  11. J. Bohlen, S. Yi, J. Victoria Hernandez, G. Kurz, D. Letzig, K.U. Kainer: Proceedings of Mg 2015, Jeju 2015.

    Google Scholar 

  12. S. Yi, D. Letzig, K. U. Kainer, O. D. Kwon, J. H. Park, J. J. Kim: Proceedings of Mg 2015, Jeju Island 2015.

    Google Scholar 

  13. F. Basson, D. Letzig: Aluminium twin roll casting transfers benefits to magnesium; Aluminium International Today, November/December (2010) 19–21.

    Google Scholar 

  14. K. Hantzsche, J. Bohlen, J. Wendt, K.U. Kainer, S.B. Yi, D. Letzig: Effect of rare earth additions on microstructure and texture development of magnesium alloy sheets; View Point Paper, Scripta Materialia 63 (2010) 725–730.

    Google Scholar 

  15. D. Letzig, J. Bohlen, G. Kurz, J. Victoria-Hernandez, R. Hoppe, S. Yi: Development of Magnesium Sheets; Magnesium Technology, Proceeding of the TMS 2018 (2018) in press.

    Google Scholar 

  16. A.G. Beer: Enhancing the extrudability of wrought magnesium alloys; in: C.J. Bettles, M.R. Barnett (Ed.) “Advances in wrought magnesium alloys”, Woodhead Publishing, Cambridge, UK (2012), 304.

    Google Scholar 

  17. J. Bohlen, J. Swiostek, D. Letzig, K.U. Kainer: Magnesium Technology, Proceedings of the TMS 2009 (2009) 225–230.

    Google Scholar 

  18. M. Regev, A. Rosen, M. Bamberger: Qualitative model for creep of AZ91D magnesium alloy; Met. Mat. Trans. 32A (2001) 1335–1345.

    Google Scholar 

  19. C.J. Bettles, M.A. Gibson, S.M. Zhu: Microstructure and mechanical behaviour of an elevated temperature Mg-rare earth based alloy; Mat. Sci. Eng. A505 (2009) 6–12.

    Google Scholar 

  20. C.J. Bettles, C.T. Forwood: Creep resistant magnesium alloy; US patent 20050002821.

    Google Scholar 

  21. M.A. Gibson, C.J. Bettles, M.T. Murray, G.L. Dunlop: AM-HP2: A new magnesium high pressure diecasting alloy for automotive powertrain applications; Magnesium Technology 2006 A.A. Luo, N.R. Neelameggham, R.S. Beals (Eds.) TMS (The Minerals, Metals & Materials Society) (2006) 327–331.

    Google Scholar 

  22. M.A. Gibson, M. Easton, V. Tyagi, M. Murray, G. Dunlop: Further improvements in HPDC Mg alloys for power train applications; Magnesium Technology 2008, M.O. Pekguleryuz, N.R. Neelameggham, R.S. Beals, E.A. Nyberg (Eds.) TMS, The Minerals, Metals and Materials Society [2008] 227–232.

    Google Scholar 

  23. S. Zhu, M.A. Easton, T.B. Abbott, J.-F. Nie, M.S. Dargusch, N. Hort, M.A. Gibson: Evaluation of Magnesium Die-Casting Alloys for Elevated Temperature Applications: Microstructure, Tensile Properties, and Creep Resistance; Met. Mat. Trans. A 46 (2015) 3543–3554.

    Google Scholar 

  24. S. Gavras, S.M. Zhu, F.F. Nie, M.A. Gibson, M.A. Easton: On the microstructural factors affecting creep resistance of die-cast Mg–La-rare earth (Nd, Y or Gd) alloys; Mat. Sci. Eng. A675 (2016) 65–75.

    Google Scholar 

  25. H. Dieringa, Y. Huang, P. Wittke, M. Klein, F. Walther, M. Dikovits, C. Poletti: Compression-creep response of magnesium alloy DieMag422 containing barium compared with the commercial creep-resistant alloys AE42 and MRI230D; Mat. Sci. Eng. A 585 (2013) 430–438.

    Google Scholar 

  26. H. Dieringa, D. Zander, M.A. Gibson: Creep behaviour under compressive stresses of calcium and barium containing mg-al-based die casting alloys; Mat. Sci. Forum 765 (2013) 69–73.

    Google Scholar 

  27. Z. Zhang, D.L. Chen: Consideration of Orowan strengthening effect in particulate-reinforced metal matrix nanocomposites: A model for predicting their yield strength; Scr. Mat. 54 (2006) 1321–1326.

    Google Scholar 

  28. H. Dieringa, L. Katsarou, R. Buzolin, G. Szakács, M. Horstmann, M. Wolff, C. Mendis, S. Vorozhtsov, D. StJohn: Ultrasound assisted casting of an AM60 based metal matrix nanocomposite, its properties and recyclability; submitted to Metals, accepted.

    Google Scholar 

  29. D.K. Ivanou, K.A. Yasakau, S. Kallip, A.D. Lisenkov, M. Starykevich, S.V. Lamaka, M.G.S. Ferreira, M.L. Zheludkevich: Active corrosion protection coating for a ZE41 magnesium alloy created by combining PEO and sol–gel techniques; RSC Advances 6 (2016) 12553–12560.

    Google Scholar 

  30. S.V. Lamaka, D. Höche, R.P. Petrauskas, C. Blawert, M.L. Zheludkevich: A new concept for corrosion inhibition of magnesium: Suppression of iron re-deposition; Electrochemistry Communications 62 (2016) 5–8.

    Google Scholar 

  31. D. Letzig: New Developments in the Field of Wrought Magnesium Alloys, International Workshop on “Processing-Microstructure-Property Relationships & Deformation Mechanisms of Magnesium Alloys”, Madrid, 21–24 Mai 2013.

    Google Scholar 

  32. E. C. Huse: A new ligature?; Chicago Medical Journal and Examiner 37 (1878) 171–172.

    Google Scholar 

  33. F. Witte: The history of biodegradable magnesium implants: A review; Acta Biomaterialia 6 (2010) 1680–1692.

    Google Scholar 

  34. Q. Chen, G. A. Thouas: Metallic implant biomaterials; Materials Science and Engineering R 87 (2015) 1–57.

    Google Scholar 

  35. http://www.syntellix.de/en/products/product-overview/all.html.

  36. http://www.magmaris.com/en.

  37. Y. Orikasa et al.: High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements; Scientific Reports 4 (2014) 5622.

    Google Scholar 

  38. H. D. Yoo et al.: Mg rechargeable batteries: an on-going challenge; Energy & Environmental Science 6 (2013) 2265–2279.

    Google Scholar 

  39. M. Armand, J. M. Tarascon: Building better batteries; Nature 451 (2008) 652–657.

    Google Scholar 

  40. G. E. Blomgren: Electrochemistry: Making a potential difference; Nature 407 (2000) 681–682.

    Google Scholar 

  41. D. Aurbach et al.: Prototype systems for rechargeable magnesium batteries; Nature 407 (2000) 724–727.

    Google Scholar 

  42. I. Blake: Silver Chloride-Magnesium Reserve Battery; Journal of the Electrochemical Society 99 8 (1952) 202C–203C.

    Google Scholar 

  43. F. Cheng and J. Chen: Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts; Chemical Society Reviews 41 6 (2012) 2172–2192.

    Google Scholar 

  44. Ø. Hasvold, T. Lian, E. Haakaas, N. Størkersen, O. Perelman and S. Cordier: CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea; Journal of Power Sources 136 (2004) 232–239.

    Google Scholar 

  45. H. Xiong, K. Yu, X. Yin, Y. Dai, Y. Yan, H. Zhu: Effects of microstructure on the electrochemical discharge behavior of Mg-6 wt% Al-1 wt% Sn alloy as anode for Mg-air primary battery; Journal of Alloys and Compounds 708 (2017) 652–661.

    Google Scholar 

  46. J. Li, K. Wan, Q. Jiang, H. Sun, Y. Li, B. Hou, L. Zhu, M. Liu: Corrosion and Discharge Behaviors of Mg-Al-Zn and Mg-Al-Zn-In Alloys as Anode Materials; Metals 6 3 (2016) 65.

    Google Scholar 

  47. D. Höche, S. V. Lamaka, M. L. Zheludkevich: European Patent Office, HZG, Ed. (2016), EP16187152.0.

    Google Scholar 

  48. Zh. Zhao-Karger et al.: Magnesium sulfur battery with improved non-nucleophilic electrolyte; Adv. Energy Mater. 5 3 (2015) 1401155.

    Google Scholar 

  49. Zh. Zhao-Karger et al.: New class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries; J. Materials Chem. A5 (2017) 10815–10820.

    Google Scholar 

  50. C. Bonatto Minella et al.: Interlayer-Expanded VOCl as Electrode Material for Magnesium-Based Batteries; ChemElectroChem 4 (2017) 738–745.

    Google Scholar 

  51. C. Bonatto Minella et al.: Li-Mg Hybrid Battery with Vanadium Oxychloride as Electrode Material; submitted (2017).

    Google Scholar 

  52. B. P. Vinayan et al.: Performance study of magnesium–sulfur battery using a graphene based sulfur composite cathode electrode and a non-nucleophilic Mg electrolyte; Nanoscale 8 (2016) 3296–3306.

    Google Scholar 

  53. C.-S. Li, Y. Sun, F. Gebert, S.-L. Chou: Adv. Energy Mater. (2017) 1700869.

    Google Scholar 

  54. B. Simon et al.: Proposal of a framework for scale-up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications; Integrated Environmental Assessment and Management 12 (2016) 465–477.

    Google Scholar 

  55. M. Weil et al.: Recycling of traction batteries as a challenge and chance for future lithium availability. In: Pistoia, G. (Eds.): Lithium-Ion Batteries: Advances and applications; Elsevier (2014), 509–528.

    Google Scholar 

  56. B. Simon et al.: Potential metal requirement of active materials in lithium-ion battery cells of electric vehicles and its impact on reserves: Focus on Europe; Resources, Conservation and Recycling 104 (2015) 300–310.

    Google Scholar 

  57. F. Gschwind et al.: Chloride Ion Battery Review: Theoretical Calculations, State of the Art, Safety, Toxicity, and an Outlook towards Future Developments; Inorganic Chemistry 21 (2017) 2784–2799.

    Google Scholar 

  58. F. Gschwind et al.: Fluoride ion batteries: Theoretical performance, safety, toxicity, and a combinatorial screening of new electrodes; Fluorine Chemistry 182 (2016) 76–90.

    Google Scholar 

  59. J. Peters et al.: The environmental impact of Li-Ion batteries and the role of key parameters—A review; Renewable and Sustainable Energy Reviews 67 (2017) 491–506.

    Google Scholar 

  60. J. Peters et al.: Life cycle assessment of sodium-ion batteries; Energy Environ. Sci. 9 (2016) 1744–1751.

    Google Scholar 

  61. M. Baumann et al.: CO2 footprint and life cycle costs of electrochemical energy storage for stationary grid applications. Energy Technology 5 (2016) 1071–1083.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Ulrich Kainer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dieringa, H. et al. (2018). Mg Alloys: Challenges and Achievements in Controlling Performance, and Future Application Perspectives. In: Orlov, D., Joshi, V., Solanki, K., Neelameggham, N. (eds) Magnesium Technology 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72332-7_1

Download citation

Publish with us

Policies and ethics