Multi-scale and Integrative Modelling Approaches

  • Gennady BocharovEmail author
  • Vitaly Volpert
  • Burkhard Ludewig
  • Andreas Meyerhans


The term multi-scale models is used with different meanings in different sciences. In mathematics, it implies the presence of one or several small parameters, homogenization and averaging techniques. In physics, it is understood in the sense of microscopic–macroscopic scales (e.g. molecular dynamics versus continuum mechanics).


  1. 1.
    A. Stephanou, V. Volpert. Hybrid modelling in cell biology. Math. Model. Nat. Phenom. 10 (2015), no. 1, 1-3.MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Stephanou, V. Volpert. Hybrid modelling in biology: a classification review. Math. Model. Nat. Phenom. 11 (2016), no. 1, 37-48.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bouchnita A, Bocharov G, Meyerhans A, Volpert V. Hybrid approach to model the spatial regulation of T cell responses. BMC Immunol. 2017; 18(Suppl 1):29.Google Scholar
  4. 4.
    A. Bouchnita, G. Bocharov, A. Meyerhans, V. Volpert. Towards a Multiscale Model of Acute HIV Infection. 2017, 5(1), 6; Scholar
  5. 5.
    Khan SH, Martin MD, Starbeck-Miller GR, Xue H-H, Harty JT, Badovinac VP. The Timing of Stimulation and IL-2 Signaling Regulate Secondary CD8\(^+\) T Cell Responses. PLoS Pathog. 2015;11(10):e1005199.CrossRefGoogle Scholar
  6. 6.
    Welsh RM, Bahl K, Marshall HD, Urban SL. Type 1 Interferons and Antiviral CD8\(^+\) T-Cell Responses. PLoS Pathog. 2012;8(1):e1002352.CrossRefGoogle Scholar
  7. 7.
    Sandra Hervas-Stubbs, Jose Luis Perez-Gracia, Ana Rouzaut, Miguel F. Sanmamed, Agnes Le Bon, and Ignacio Melero Direct Effects of Type I Interferons on Cells of the Immune System. Clin Cancer Res. 2011;17:2619–2627.Google Scholar
  8. 8.
    Ludewig B, Stein JV, Sharpe J, Cervantes-Barragan L, Thiel V. Bocharov G. A global imaging view on systems approaches in immunology. Eur J Immunol. 2012;42:3116–3125.Google Scholar
  9. 9.
    Bessonov N, Eymard N, Kurbatova P, Volpert V. Mathematical modelling of erythropoiesis in vivo with multiple erythroblastic islands. Applied Mathematics Letters. 2012;25: 1217–1221.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fischer S, Kurbatova P, Bessonov N, Gandrillon O, Volpert V, Crauste F. Modelling erythroblastic islands: using a hybrid model to assess the function of central macrophage. J Theoretical Biol. 2012;298:92–106.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kurbatova P, Bernard S, Bessonov N, Crauste F, Demin I, Dumontet C, Fischer S, Volpert V. Hybrid model of erythropoiesis and leukemia treatment with cytosine arabinoside. SIAM J Appl Math. 2011;71(6):2246–2268.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Volpert V, Bessonov N, Eymard N, Tosenberger A. Modèle multi-échelle de la dynamique cellulaire. In: Glade N, et dAngelique Stephanou, editeurs. Le vivant discret et continu. Editions Materiologiques; 2013.Google Scholar
  13. 13.
    Kurbatova P, Eymard N, V. Volpert V. Hybrid Model of Erythropoiesis. Acta Biotheoretica. 2013;61:305–315.CrossRefGoogle Scholar
  14. 14.
    Eymard N, Bessonov N, Gandrillon O, Koury MJ, Volpert V. The role of spatial organization of cells in erythropoiesis. J Math Biol. 2015;70:71–97.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Stéphanou A, Volpert V. Hybrid modelling in biology: a classification review. Math Model Nat Phenom. 2016;11(1):37–48.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Mueller SN, Germain RN. Stromal cell contributions to the homeostasis and functionality of the immune system. Nat Rev Immunol. 2009;9(9):618–629.CrossRefGoogle Scholar
  17. 17.
    Girard JP, Moussion C, Forster R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol. 2012;12(11):762–773.CrossRefGoogle Scholar
  18. 18.
    Junt T, Scandella E, Ludewig B. Form follows function: lymphoid tissue microarchitecture in antimicrobial immune defence.Nat Rev Immunol. 2008; 8(10):764–775.CrossRefGoogle Scholar
  19. 19.
    Forster R, Braun A, Worbs T. Lymph node homing of T cells and dendritic cells via afferent lymphatics.Trends Immunol. 2012;33(6):271–280.CrossRefGoogle Scholar
  20. 20.
    Goldsby RAA, Kuby J, Kindt ThJ. Immunology. W H Freeman & Co (Sd); 4th edition, 2000; Ch.10:222.Google Scholar
  21. 21.
    Chang JT, Reiner SL. Asymmetric Division and Stem Cell Renewal without a Permanent Niche: Lessons from Lymphocytes. Cold Spring Harb Symp Quant Biol. 2008;73:73–79.CrossRefGoogle Scholar
  22. 22.
    Broere F, Apasov SG, Sitkovsky MV, van Eden W. T cell subsets and T cell-mediated immunity. In: Nijkamp FP, Parnham MJ, editors. Principles of Immunopharmacology: 3rd revised and extended edition. Basel: Springer AG; 2011.CrossRefGoogle Scholar
  23. 23.
    Nelson BH. IL-2, Regulatory T Cells, and Tolerance. J Immunol. 2004;172:3983–3988.CrossRefGoogle Scholar
  24. 24.
    Ganusov VV, De Boer RJ. Do most lymphocytes in humans really reside in the gut? Trends Immunol. 2007;28(12):514–518.CrossRefGoogle Scholar
  25. 25.
    Scandella E, Bolinger B, Lattmann E, Miller S, Favre S, Littman DR, Finke D, Luther SA, Junt T, Ludewig B. Restoration of lymphoid organ integrity through the interaction of lymphoid tissue-inducer cells with stroma of the T cell zone. Nat Immunol. 2008;9(6):667–675.CrossRefGoogle Scholar
  26. 26.
    Kumar V, Scandella E, Danuser R, Onder L, Nitschke M, Fukui Y, Halin C, Ludewig B, Stein JV. Global lymphoid tissue remodeling during a viral infection is orchestrated by a B cell-lymphotoxin-dependent pathway. Blood. 2010;115(23):4725–4733.CrossRefGoogle Scholar
  27. 27.
    Bocharov G, Zust R, Cervantes-Barragan L, Luzyanina T, Chiglintsev E, Chereshnev VA, et al. A Systems Immunology Approach to Plasmacytoid Dendritic Cell Function in Cytopathic Virus Infections. PLoS Pathog. 2010;6(7):e1001017.CrossRefGoogle Scholar
  28. 28.
    Bocharov G, Chereshnev V, Gainova I, Bazhan S, Bachmetyev B, Argilaguet J, Martinez J, Meyerhans A. Human Immunodeficiency Virus Infection: from Biological Observations to Mechanistic Mathematical Modelling. Mathematical Modelling of Natural Phenomena, 2012;7 (5): 78–104.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Cremasco V, Woodruff MC, Onder L, Cupovic J, Nieves-Bonilla JM, Schildberg FA, Chang J, Cremasco F, Harvey CJ, Wucherpfennig K, Ludewig B, Carroll MC, Turley SJ. B cell homeostasis and follicle confines are governed by fibroblastic reticular cells. Nat Immunol. 2014;15(10):973–981.CrossRefGoogle Scholar
  30. 30.
    Giese C, Marx U. Human immunity in vitro - solving immunogenicity and more.Adv Drug Deliv Rev. 2014 69-70:103–122.Google Scholar
  31. 31.
    Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature. 1993;362(6422):758–761.CrossRefGoogle Scholar
  32. 32.
    Moskophidis D, Battegay M, van den Broek M, Laine E, Hoffmann-Rohrer U, Zinkernagel R. Role of virus and host variables in virus persistence or immunopathological disease caused by a non-cytolytic virus. J. Gen. Virol. 1995;76(2):381–391.CrossRefGoogle Scholar
  33. 33.
    McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development. Nature reviews Immunology. 2010;10(1):11–23.CrossRefGoogle Scholar
  34. 34.
    Cervantes-Barragan L, Lewis KL, Firner S, Thiel V, Hugues S, Reith W, Ludewig B, Reizis B. Plasmacytoid dendritic cells control T-cell response to chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(8):3012–3017.CrossRefGoogle Scholar
  35. 35.
    Hansen SG, Piatak M, Ventura AB, Colette M., Hughes CM, Gilbride RM, Ford JC, Oswald K, Shoemaker R, Li Y, Lewis MS, Gilliam AN, Xu G, Whizin N, Burwitz BJ, Planer SL, Turner JM, Legasse AW, Axthelm MK, Nelson JA, Fruh K, Sacha JB, Estes JD, Keele BF, Edlefsen PT, Lifson JD, Picker LJ. Immune clearance of highly pathogenic SIV infection. Nature. 2013;502(7469):100–104.CrossRefGoogle Scholar
  36. 36.
    Kaech SM, Wherry EJ. Heterogeneity and cell-fate decisions in effector and memory CD8+ T cell differentiation during viral infection. Immunity. 2007;27(3):393–405.CrossRefGoogle Scholar
  37. 37.
    Fricke GM, Letendre KA, Moses ME, Cannon JL. Persistence and Adaptation in Immunity: T Cells Balance the Extent and Thoroughness of Search. PLoS Computational Biology. 2016;12(3):e1004818.CrossRefGoogle Scholar
  38. 38.
    Baker CTH, Bocharov GA, Paul CAH. Mathematical Modelling of the Interleukin-2 T-Cell System: A Comparative Study of Approaches Based on Ordinary and Delay Differential Equation. J Theor Medicine. 1997;1(2):117–128.CrossRefGoogle Scholar
  39. 39.
    Weinan, E. Principles of Multiscale Modelling; Cambridge University Press: Cambridge, UK, 2011.Google Scholar
  40. 40.
    Fallahi-Sichani, M.; El-Kebir, M.; Marino, S.; Kirschner, D.E.; Linderman, J.J. Multi-scale computational modeling reveals a critical role for TNF receptor 1 dynamics in tuberculosis granuloma formation. J. Immunol. 2011, 186, 3472–3483.CrossRefGoogle Scholar
  41. 41.
    Cilfone, N.A.; Kirschner, D.E.; Linderman, J.J. Strategies for efficient numerical implementation of hybrid multi-scale agent-based models to describe biological systems. Cell. Mol. Bioeng. 2015, 8, 119–136.CrossRefGoogle Scholar
  42. 42.
    Simeone Marino, S.; Kirschner, D.E. A multi-compartment hybrid computational model predicts key roles for dendritic cells in tuberculosis infection. Computation 2016, 4, 39.CrossRefGoogle Scholar
  43. 43.
    Prokopiou, S.A.; Barbarroux, L.; Bernard, S.; Mafille, J.; Leverrier, Y.; Arpin, C.; Marvel, J.; Gandrillon, O.; Crauste, F. Multiscale Modeling of the Early CD8 T-Cell Immune Response in Lymph Nodes: An Integrative Study. Computation 2014, 2, 159–181.Google Scholar
  44. 44.
    Gao, X.; Arpin, C.; Marvel, J.; Prokopiou, S.A.; Gandrillon, O.; Crauste, F. IL-2 sensitivity and exogenous IL-2 concentration gradient tune the productive contact duration of CD8(+) T cell-APC: A multiscale modeling study. BMC Syst. Biol. 2016 , 10, doi:10.1186/s12918-016-0323-y.Google Scholar
  45. 45.
    Williams, R.A.; Jon Timmis, J.; Qwarnstrom, E.E. Computational Models of the NF-KB Signaling Pathway. Computation 2014 , 2, 131–158.CrossRefGoogle Scholar
  46. 46.
    Baldazzi, V.; Paci, P.; Bernaschi, M.; Castiglione, F. Modeling lymphocyte homing and encounters in lymph nodes. BMC Bioinform. 2009, 10, Scholar
  47. 47.
    Gong, C.; Mattila, J.T.; Miller, M.; Flynn, J.L.; Linderman, J.J.; Kirschner, D. Predicting lymph node output efficiency using systems biology. J. Theor. Biol. 2013, 335, 169–84.CrossRefGoogle Scholar
  48. 48.
    Palsson, S.; Hickling, T.P.; Bradshaw-Pierce, E.L.; Zager, M.; Jooss, K.; OBrien, P.J.; Spilker, M.E.; Palsson, B.O.; Vicini, P. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models. BMC Syst. Biol. 2013, 7, Scholar
  49. 49.
    Germain, R.; Meier-Schellersheim, M.; Nita-Lazar, A.; Fraser, I. Systems biology in immunology—A computational modeling perspective. Annu. Rev. Immunol. 2011, 29, 527–585.CrossRefGoogle Scholar
  50. 50.
    Donovan, G.M.; Lythe, G. T cell and reticular network co-dependence in HIV infection. J. Theor. Biol. 2016, 395, 211–220.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Gennady Bocharov
    • 1
    Email author
  • Vitaly Volpert
    • 2
    • 3
  • Burkhard Ludewig
    • 4
  • Andreas Meyerhans
    • 5
  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Institut Camille Jordan, UMR 5208 CNRSCentre National de la Recherche Scientifique (CNRS)VilleurbanneFrance
  3. 3.RUDN UniversityMoscowRussia
  4. 4.Institute of ImmunobiologyKantonsspital St. GallenSt. GallenSwitzerland
  5. 5.Parc de Recerca Biomedica BarcelonaICREA and Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations