Skip to main content

Modelling of Human Infections

  • Chapter
  • First Online:
Mathematical Immunology of Virus Infections

Abstract

In this chapter, we illustrate the application of mathematical models and computational analyses tools of various complexities to the description and explanation of some observed phenotypes of viral infections in humans, such as HIV and HBV infections. Specifically, we try to gain a deeper understanding of the sensitivity of infection dynamics to growth rate and the efficacy of antigen presentation by APCs, the phenomenon of spontaneous recovery from HBV infection, and the kinetic determinants of a low-level (i.e. below the detection threshold) HBV persistence. The material of this chapter is based on our previous work published in [3, 12,13,14, 33].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Material of this section uses the results of our studies from AIDS Res Hum Retroviruses, Vol. 23, Sester et al., Maintenance of HIV-Specific Central and Effector Memory CD4 and CD8 T Cells Requires Antigen Persistence, Pages 549–553, Copyright \(\copyright \) 2007 Mary Ann Liebert, Inc.

  2. 2.

    Material of Sects. 5.3.1 and 5.3.2 uses the results of our studies from Journal of Virology, Vol. 78, Bocharov et al., Underwhelming the immune response: effect of slow virus growth on CD8+-T-lymphocyte responses, Pages 2247–2254, Copyright \(\copyright \) 2004 by the American Society for Microbiology. Material of Sect. 5.3.3 uses the results of our studies from Journal of Computational and Applied Mathematics, Vol. 184, Luzyanina et al., Numerical bifurcation analysis of immunological models with time delays, Pages 165–176, Copyright \(\copyright \) 2005, with permission from Elsevier.

  3. 3.

    Material of this section uses the results of our studies from Journal of Computational and Applied Mathematics, Vol. 184, Luzyanina et al., Numerical bifurcation analysis of immunological models with time delays, Pages 165–176, Copyright \(\copyright \) 2005, with permission from Elsevier.

  4. 4.

    Material of Sect. 5.4 uses the results of our studies from Mathematics and Computers in Simulation, Vol. 96, Luzyanina and Bocharov, Stochastic modeling of the impact of random forcing on persistent hepatitis B virus infection, Pages 54–65, Copyright \(\copyright \) 2014, with permission from Elsevier.

  5. 5.

    Material of Sect. 5.5 uses the results of our studies from Journal of Computational and Applied Mathematics, Vol. 184, Marchuk et al., Adjoint equations and analysis of complex systems: Application to virus infection modelling, Pages 177–204, Copyright \(\copyright \) 2005, with permission from Elsevier.

References

  1. Zinkernagel R.M., Hengartner H., Stitz L.. On the role of viruses in the evolution of immune responses. British Medical Bulletin , 41 (1985) 92–97.

    Google Scholar 

  2. Grossman Z., Paul, W.E. Autoreactivity, dynamic tuning and selectivity, Curr. Opin. Immunol., 13 (2001) 687–698.

    Google Scholar 

  3. Sester U, Sester M, Kohler H, Pees HW, Gartner BC, Wain-Hobson S, Bocharov G, Meyerhans A. Maintenance of HIV-specific central and effector memory CD4 and CD8 T cells requires antigen persistence. AIDS Res Hum Retroviruses. 2007; 23(4):549–553.

    Google Scholar 

  4. Moskophidis D, Lechner F, Pircher H, Zinkernagel RM: Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 1993, 362:758–761.

    Google Scholar 

  5. Germain, R. N. 2001. The art of the probable: system control in the adaptive immune system. Science 293:240–245.

    Google Scholar 

  6. Marchuk GI. Mathematical Models in Immunology. New York, Optimization Software, Inc., 1983. 378 pp.

    Google Scholar 

  7. B. Rehermann, C. Ferrari, C. Pasquinelli, and F. V. Chisari. The hepatitis B virus persists for decades after patients’ recovery from acute viral hepatitis despite active maintenance of a cytotoxic T-lymphocyteresponse. Nature Med., 2:1104–1108, 1996.

    Google Scholar 

  8. G. J. Webster, S. Reignat, M. K. Maini, S. A. Whalley, G. S. Ogg, A. S. King, D. Brown, P. L. Amlot, R. Williams, G. M. Dusheiko, and A. Bertoletti. Incubation phase of acute hepatitis B in man: dynamics of cellular immune mechanisms. Hepatology, 32:1117–1124, 2000.

    Google Scholar 

  9. Whalley, S. A., J. M. Murray, D. Brown, G. J. Webster, V. C. Emery, G. M. Dusheiko, and A. S. Perelson. 2001. Kinetics of acute hepatitis B virus infection in humans. J. Exp. Med. 193:847–854.

    Google Scholar 

  10. R. M. Zinkernagel. What is missing in immunology to understand immunity? Nature Immunology, 1:181–185, 2000.

    Google Scholar 

  11. A. Altinbas, Y. Yüksel, M. Pamukcu, F. Ekiz, Ö. Basar, O. Yüksel, Spontaneous HBsAg seroconversion after severe flare of chronic hepatitis B infection, Annals Hepatology. 9 (2010) 194–197.

    Google Scholar 

  12. Tatyana Luzyanina, Dirk Roose and Gennady Bocharov Numerical bifurcation analysis of immunological models with time delays J. Comput. Appl. Math. 184 (2005): 165–176.

    Google Scholar 

  13. Tatyana Luzyanina, Gennady Bocharov. Stochastic modelling of the impact of random forcing on persistent hepatitis B virus infection. Mathematics and Computers in Simulation, 96 (2014): 54–65.

    Google Scholar 

  14. G. Bocharov, B. Ludewig, A. Bertoletti, P. Klenerman, T. Junt, T. Luzyanina, C. Fraser, R.M. Anderson, Underwhelming the immune response: effect of slow virus growth rates on CD8+ T lymphocyte responses, J. Virol. 78 (2004) 2247–2254.

    Google Scholar 

  15. F.V. Chisari, M. Isogawa, S.F. Wieland, Pathogenesis of hepatitis B virus infection, Pathol. Biol. (Paris). 58 (2010) 258-266.

    Google Scholar 

  16. S.W. Cho, J.Y. Cheong, Y.S. Ju, D.H. Oh, Y.J. Suh, K.W. Lee, Human leukocyte antigen class II association with spontaneous recovery from hepatitis B virus infection in korenas: Analysis at the haplotype level, J. Korean Med. Sci. 23 (2008) 838–844.

    Google Scholar 

  17. D. J. Higham, P. E. Kloeden, MAPLE and MATLAB for stochastic differential equations in finance, in S. S. Nielsen (Ed.), Programming Languages and Systems in Computational Economics and Finance, volume 18 of Advances in Computational Economics, Kluwer Academic Publishers, 2002, pp. 233–270.

    Google Scholar 

  18. P. E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, 1999.

    Google Scholar 

  19. M.K. Maini, C. Boni, C.K. Lee, J.R. Larrubia, S. Reignat, G.S. Ogg, A.S. King, J. Herberg, R. Gilson, A. Alisa, R. Williams, D. Vergani, N.V. Naoumov, C. Ferrari, A. Bertoletti, The role of virus-specific CD8(+) cells in liver damage and viral control during persistent hepatitis B virus infection, J. Exp. Med. 191 (2000) 1269–1280.

    Google Scholar 

  20. Matlab http://www.mathworks.com/.

  21. M.A. Nowak, C.R. Bangham, Population dynamics of immune responses to persistent viruses, Science, 272 (1996) 74–79.

    Google Scholar 

  22. U. Picchini, SDE-Toolbox: Simulation and Estimation of Stochastic Differential Equations with MATLAB, Technical Report, 2007. Available from http://sdetoolbox.sourceforge.net.

  23. A.T. Tan, S. Koh, W. Goh, H.Y. Zhe, A.J. Gehring, S.G. Lim, A. Bertoletti, A longitudinal analysis of innate and adaptive immune profile during hepatic flares in chronic hepatitis B, J. Hepatol. 52 (2010) 330–339.

    Google Scholar 

  24. G.J. Webster, S. Reignat, D. Brown, G.S. Ogg, L. Jones, S.L. Seneviratne, R. Williams, G. Dusheiko, A. Bertoletti, Longitudinal analysis of CD8+ T cells specific for structural and nonstructural hepatitis B virus proteins in patients with chronic hepatitis B: implications for immunotherapy, J Virol. 78 (2004) 5707–5719.

    Google Scholar 

  25. Bocharov G.A., Marchuk G.I., Romanyukha A.A. Numerical solution by LMMs of stiff delay differential systems modelling and immune response. Numer. Math. (1996) 73, 131–148.

    Google Scholar 

  26. Doherty P.C. Some problem areas in the interaction between viruses and the immune system. Immunol. Cell Biol. (1986) 65, 279–286.

    Google Scholar 

  27. Fong T., Di Bisceglie A.M., Biswas R., Waggoner J., Wilson L., Clagget J., Hoofnagle J.H. High levels of viral replication during acute hepatitis B infection predict progression to chronicity. J. Med. Virol. (1994) 43, 155–158.

    Google Scholar 

  28. Grossman Z., Min B., Meier-Schellersheim M., and Paul W. Concomitant regulation of T-cell activation and homeostasis. NATURE REVIEWS Immunology (2004) 4, 7–15.

    Google Scholar 

  29. Marchuk G.I. Mathematical models of immune response in infectious diseases. – Dordrecht: Kluwer Press, 1997.

    Google Scholar 

  30. Marchuk G.I. Adjoint equations and the sensitivity of functionals. Earth. Obs. Rem. Sens. (1999) 15, 645–677.

    Google Scholar 

  31. Marchuk G.I., Petrov R.V., Romanyukha A.A., Bocharov G.A. Mathematical model of antiviral immune response I. Data analysis, generalized picture construction and parameters evaluation for hepatitis B. J. Theoret. Biol. (1991) 151, 1–40.

    Google Scholar 

  32. Marchuk G.I., Romanyukha A.A., Bocharov G.A. Mathematical model of antiviral immune response II. Parameter indentification for acute viral hepatitis B. J. Theoret. Biol. (1991) 151, 41–70.

    Google Scholar 

  33. G.I. Marchuk, V. Shutyaev and G. Bocharov. Adjoint equations and analysis of complex systems: application to virus infection modeling. J. Comput. Appl. Math. 184 (2005): 177–204.

    Google Scholar 

  34. Pontryagin, L. S., Selected Works, Nauka, Moscow, 1988 (in Russian).

    Google Scholar 

  35. Pupko, V. Ya., Zrodnikov, A. V., and Likhachev, Yu. I., The Adjoint Function Method in Physics and Engineering, Energoatomizdat, Moscow, 1984 (in Russian).

    Google Scholar 

  36. Schrödinger E. Quantisierung als Eigenwertproblem. Ann. Phys. (1926) 80, 437–490.

    Google Scholar 

  37. Shutyaev V. An algorithm for computing functionals for a class of nonlinear problems using the adjoint equation. Sov. J. Numer. Anal. Math. Modelling (1991) 6, 169–178.

    Google Scholar 

  38. Shutyaev V. Control operators and iterative algorithms for variational data assimilation problems., Nauka, Moscow, 2001 (in Russian).

    Google Scholar 

  39. Bell G.I. Predator-prey equations simulating an immune response. Mathematical Biosciences. 1973; 16 (3–4), 291–314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennady Bocharov .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bocharov, G., Volpert, V., Ludewig, B., Meyerhans, A. (2018). Modelling of Human Infections. In: Mathematical Immunology of Virus Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-72317-4_5

Download citation

Publish with us

Policies and ethics