Advertisement

A Survey of Elementary Totally Disconnected Locally Compact Groups

  • Phillip Wesolek
Chapter
Part of the MATRIX Book Series book series (MXBS, volume 1)

Abstract

The class of elementary totally disconnected locally compact (t.d.l.c.) groups is the smallest class of t.d.l.c. second countable (s.c.) groups which contains the second countable profinite groups and the countable discrete groups and is closed under taking closed subgroups, Hausdorff quotients, group extensions, and countable directed unions of open subgroups. This class appears to be fundamental to the study of t.d.l.c. groups. In these notes, we give a complete account of the basic properties of the class of elementary groups. The approach taken here is more streamlined than previous works, and new examples are sketched.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This survey originated from a mini-course given at the Mathematical Research Institute MATRIX. The author thanks the institute for its hospitality. He also thanks Colin Reid and Simon M. Smith for their many suggestions for improvements to these notes and for reading an initial draft. The author is supported by ERC grant #278469.

References

  1. 1.
    Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s property (T), New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008).  https://doi.org/10.1017/CBO9780511542749
  2. 2.
    Brin, M.G.: Elementary amenable subgroups of R. Thompson’s group F. Int. J. Algebra Comput. 15(4), 619–642 (2005). https://doi.org/10.1142/S0218196705002517 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Caprace, P.E., Monod, N.: Decomposing locally compact groups into simple pieces. Math. Proc. Camb. Philos. Soc. 150(1), 97–128 (2011). https://doi.org/10.1017/S0305004110000368 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Caprace, P.E., Cornulier, Y.: On embeddings into compactly generated groups. Pac. J. Math. 269(2), 305–321 (2014).  https://doi.org/10.2140/pjm.2014.269.305 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Cesa, M., Le Maître, F.: Elementary totally disconnected locally compact groups, after Wesolek (2015). https://webusers.imj-prg.fr/~francois.le-maitre/articles/surveyETDLC.pdf
  6. 6.
    Dieudonné, J.: La géométrie des groupes classiques. Springer, Berlin (1971). Troisième édition, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 5Google Scholar
  7. 7.
    Kechris, A.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995). https://doi.org/10.1007/978-1-4612-4190-4 CrossRefGoogle Scholar
  8. 8.
    Kunen, K.: Set Theory: An Introduction to Independence Proofs. Studies in Logic and the Foundations of Mathematics, vol. 102. North-Holland Publishing Co., Amsterdam (1980)Google Scholar
  9. 9.
    Le Boudec, A.: Groups acting on trees with almost prescribed local action. Comment. Math. Helv. 91(2), 253–293 (2016).  https://doi.org/10.4171/CMH/385 MathSciNetCrossRefGoogle Scholar
  10. 10.
    Osin, D.V.: Elementary classes of groups. Mat. Zametki 72(1), 84–93 (2002). https://doi.org/10.1023/A:1019869105364 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Reid, C.D., Wesolek, P.R.: Dense normal subgroups and chief factors in locally compact groups. Proc. London Math. Soc. (2017).  https://doi.org/10.1112/plms.12088
  12. 12.
    Reid, C.D., Wesolek, P.R.: Homomorphisms into totally disconnected, locally compact groups with dense image (2015). http://arxiv.org/abs/1509.00156
  13. 13.
    Smith, S.M.: A product for permutation groups and topological groups. Duke Math. J. 166(15), 2965–2999 (2017)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Tits, J.: Sur le groupe des automorphismes d’un arbre. In: Essays on topology and related topics (Mémoires dédiés à Georges de Rham), pp. 188–211. Springer, New York (1970)CrossRefGoogle Scholar
  15. 15.
    Wesolek, P.: Elementary totally disconnected locally compact groups. Proc. Lond. Math. Soc. (3) 110(6), 1387–1434 (2015).  https://doi.org/10.1112/plms/pdv013 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wesolek, P., Williams, J.: Chain conditions, elementary amenable groups, and descriptive set theory. Groups Geom. Dyn. (2015, accepted for publication). http://arxiv.org/abs/1410.0975

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematical SciencesBinghamton UniversityBinghamtonUSA

Personalised recommendations