Morse Structures on Partial Open Books with Extendable Monodromy

Chapter
Part of the MATRIX Book Series book series (MXBS, volume 1)

Abstract

The first author in recent work with D. Gay developed the notion of a Morse structure on an open book as a tool for studying closed contact 3-manifolds. We extend the notion of Morse structure to extendable partial open books in order to study contact 3-manifolds with convex boundary.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors would like to acknowledge the support and hospitality of MATRIX during the workshop Quantum Invariants and Low-Dimensional Topology. The second author is supported by Australian Research Council grant DP160103085.

References

  1. 1.
    Etgü, T., Ozbagci, B.: On the relative Giroux correspondence. In: Low-Dimensional and Symplectic Topology. Proceedings of Symposia in Pure Mathematics, vol. 82, pp. 65–78. American Mathematical Society, Providence, RI (2011).  http://dx.doi.org/10.1090/pspum/082/2768654
  2. 2.
    Farb, B., Margalit, D.: A Primer on Mapping Class Groups. Princeton Mathematical Series, vol. 49. Princeton University Press, Princeton, NJ (2012)Google Scholar
  3. 3.
    Gay, D.T., Licata, J.E.: Morse structures on open books (2015). http://arxiv.org/abs/1508.05307
  4. 4.
    Giroux, E.: Convexité en topologie de contact. Comment. Math. Helv. 66(4), 637–677 (1991)Google Scholar
  5. 5.
    Giroux, E.: Structures de contact en dimension trois et bifurcations des feuilletages de surfaces. Invent. Math. 141(3), 615–689 (2000)Google Scholar
  6. 6.
    Giroux, E.: Géométrie de contact: de la dimension trois vers les dimensions supérieures. In: Proceedings of the International Congress of Mathematicians, (Beijing, 2002), vol. II, pp. 405–414. Higher Education Press, Beijing (2002)Google Scholar
  7. 7.
    Honda, K., Kazez, W.H., Matić, G.: The contact invariant in sutured Floer homology. Invent. Math. 176(3), 637–676 (2009). http://dx.doi.org/10.1007/s00222-008-0173-3
  8. 8.
    Juhász, A.: Holomorphic discs and sutured manifolds. Algebr. Geom. Topol. 6, 1429–1457 (2006) (electronic)Google Scholar
  9. 9.
    Lipshitz, R., Ozsvath, P., Thurston, D.: Bordered Heegaard Floer homology: invariance and pairing (2008). http://arxiv.org/abs/0810.0687
  10. 10.
    Mathews, D.V.: Strand algebras and contact categories (2016). http://arxiv.org/abs/1608.02710
  11. 11.
    Torisu, I.: Convex contact structures and fibered links in 3-manifolds. Int. Math. Res. Not. (9), 441–454 (2000). http://dx.doi.org/10.1155/S1073792800000246
  12. 12.
    Zarev, R.: Bordered Floer homology for sutured manifolds (2009). http://arxiv.org/abs/0908.1106

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Mathematical Sciences InstituteThe Australian National UniversityCanberraAustralia
  2. 2.School of Mathematical SciencesMonash UniversityClaytonAustralia

Personalised recommendations