A Simple Model of 4d-TQFT

Chapter
Part of the MATRIX Book Series book series (MXBS, volume 1)

Abstract

We show that, associated with any complex root of unity ω, there exists a particularly simple 4d-TQFT model defined on the cobordism category of ordered triangulations of oriented 4-manifolds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work is supported in part by the Swiss National Science Foundation.

References

  1. 1.
    Atiyah, M.: Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math. 68, 175–186 (1988/1989). http://www.numdam.org/item?id=PMIHES_1988__68__175_0 MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bazhanov, V.V., Baxter, R.J.: New solvable lattice models in three dimensions. J. Stat. Phys. 69(3–4), 453–485 (1992). http://dx.doi.org/10.1007/BF01050423 MathSciNetCrossRefGoogle Scholar
  3. 3.
    Biedenharn, L.C.: An identity by the Racah coefficients. J. Math. Phys. 31, 287–293 (1953)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Carter, J.S., Kauffman, L.H., Saito, M.: Structures and diagrammatics of four-dimensional topological lattice field theories. Adv. Math. 146(1), 39–100 (1999).  http://dx.doi.org/10.1006/aima.1998.1822 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Crane, L., Frenkel, I.B.: Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases. J. Math. Phys. 35(10), 5136–5154 (1994). http://dx.doi.org/10.1063/1.530746. Topology and physicsMathSciNetCrossRefGoogle Scholar
  6. 6.
    Crane, L., Yetter, D.: A categorical construction of 4D topological quantum field theories. In: Quantum Topology. Knots Everything, vol. 3, pp. 120–130. World Scientific Publications, River Edge, NJ (1993). http://dx.doi.org/10.1142/9789812796387_0005 Google Scholar
  7. 7.
    Elliott, J.P.: Theoretical studies in nuclear structure. V. The matrix elements of non-central forces with an application to the 2p-shell. Proc. R. Soc. Lond. Ser. A 218, 345–370 (1953).  http://dx.doi.org/10.1098/rspa.1953.0109 Google Scholar
  8. 8.
    Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  9. 9.
    Kashaev, R.: A simple model of 4d-TQFT (2014). arXiv:1405.5763Google Scholar
  10. 10.
    Kashaev, R.M.: On realizations of Pachner moves in 4d. J. Knot Theory Ramif. 24(13), 1541002, 13 (2015). http://dx.doi.org/10.1142/S0218216515410023 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Korepanov, I.G.: Euclidean 4-simplices and invariants of four-dimensional manifolds. I. Surgeries 3 → 3. Teor. Mat. Fiz. 131(3), 377–388 (2002). http://dx.doi.org/10.1023/A:1015971322591
  12. 12.
    Korepanov, I.G., Sadykov, N.M.: Parameterizing the simplest Grassmann-Gaussian relations for Pachner move 3–3. Symmetry Integr. Geom. Methods Appl. 9, Paper 053, 19 (2013)Google Scholar
  13. 13.
    Lickorish, W.B.R.: Simplicial moves on complexes and manifolds. In: Proceedings of the Kirbyfest (Berkeley, CA, 1998). Geometry & Topology Monographs, vol. 2, pp. 299–320. Geometry & Topology Publications, Coventry (1999) (electronic).  http://dx.doi.org/10.2140/gtm.1999.2.299
  14. 14.
    Oeckl, R.: Discrete Gauge Theory. Imperial College Press, London (2005). http://dx.doi.org/10.1142/9781860947377. From lattices to TQFT
  15. 15.
    Pachner, U.: PL homeomorphic manifolds are equivalent by elementary shellings. Eur. J. Comb. 12(2), 129–145 (1991). http://dx.doi.org/10.1016/S0195-6698(13)80080-7
  16. 16.
    Ponzano, G., Regge, T.: Semiclassical limit of Racah coefficients. In: Spectroscopic and group theoretical methods in physics, pp. 1–58. North-Holland, Amsterdam (1968)Google Scholar
  17. 17.
    Turaev, V.G.: Quantum Invariants of Knots and 3-Manifolds. de Gruyter Studies in Mathematics, vol. 18. Walter de Gruyter, Berlin (1994)Google Scholar
  18. 18.
    Turaev, V.G., Viro, O.Y.: State sum invariants of 3-manifolds and quantum 6j-symbols. Topology 31(4), 865–902 (1992). http://dx.doi.org/10.1016/0040-9383(92)90015-A MathSciNetCrossRefGoogle Scholar
  19. 19.
    Walker, K.: On Witten’s 3-manifold invariants (1991). PreprintGoogle Scholar
  20. 20.
    Witten, E.: Topological quantum field theory. Commun. Math. Phys. 117(3), 353–386 (1988). http://projecteuclid.org/getRecord?id=euclid.cmp/1104161738 MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section de MathématiquesUniversité de GenèveGenève 4Switzerland

Personalised recommendations