Advertisement

Gysin Exact Sequences for Quantum Weighted Lens Spaces

  • Francesca Arici
Chapter
Part of the MATRIX Book Series book series (MXBS, volume 1)

Abstract

We describe quantum weighted lens spaces as total spaces of quantum principal circle bundles, using a Cuntz-Pimsner model. The corresponding Pimsner exact sequence is interpreted as a noncommutative analogue of the Gysin exact sequence. We use the sequence to compute the K-theory and K-homology groups of quantum weighted lens spaces, extending previous results and computations due to the author and collaborators.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank the mathematical research institute MATRIX in Australia and the organisers of the workshop “Refining C-algebraic invariants using KK-theory”, where part of this research was performed. This work was motivated by discussions with Efren Ruiz about the structure of graph algebras. We thank Adam Rennie for helpful discussion and for his hospitality at the University of Wollongong, where part of this work was carried out. Finally, the author would like to thank Francesco D’Andrea, Giovanni Landi, Bram Mesland and Walter van Suijlekom for helpful comments on an early version of this work. This research was partially supported by NWO under the VIDI-grant 016.133.326.

References

  1. 1.
    Arici, F., Rennie, A.: Explicit isomorphism of mapping cone and Cuntz-Pimsner exact sequences (2016). arXiv:1605.08593Google Scholar
  2. 2.
    Arici, F., Brain, S., Landi, G.: The Gysin sequence for quantum lens spaces. J. Noncommut. Geom. 9, 1077–1111 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Arici, F., D’Andrea, F., Landi, G.: Pimsner algebras and circle bundles. In: Noncommutative Analysis, Operator Theory and Applications, vol. 252, pp. 1–25. Birkhäuser, Cham (2016)zbMATHGoogle Scholar
  4. 4.
    Arici, F., Kaad, J., Landi, G.: Pimsner algebras and Gysin sequences from principal circle actions. J. Noncommut. Geom. 10, 29–64 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Blackadar, B.: K-Theory for Operator Algebras, 2nd edn. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  6. 6.
    Brzeziński, T., Fairfax, S.A.: Quantum teardrops. Commun. Math. Phys. 316, 151–170 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Brzeziński, T., Fairfax, S.A.: Notes on quantum weighted projective spaces and multidimensional teardrops. J. Geom. Phys. 93, 1–10 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Brzeziński, T., Szymański, W.: The C*-algebras of quantum lens and weighted projective spaces (2016). arXiv:1603.04678Google Scholar
  9. 9.
    Cuntz, J.: Simple C- algebras generated by isometries. Commun. Math. Phys. 57, 173–185 (1977)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Cuntz, J., Krieger, W.: A class of C-algebras and topological Markov chains. Invent. Math. 56, 251–268 (1980)MathSciNetCrossRefGoogle Scholar
  11. 11.
    D’Andrea, F., Landi, G.: Quantum weighted projective and lens spaces. Commun. Math. Phys. 340, 325–353 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Eilers, S., Restorff, G., Ruiz, E., Sørensen, A.P.W.: Geometric classification of graph C-algebras over finite graphs (2016). arXiv:1604.05439Google Scholar
  13. 13.
    Exel, R.: Circle actions on C-algebras, partial automorphisms, and a generalized Pimsner-Voiculescu exact sequence. J. Funct. Anal. 122, 361–401 (1994)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gabriel, O., Grensing, M.: Spectral triples and generalized crossed products (2013). arXiv:1310.5993Google Scholar
  15. 15.
    Goffeng, M., Mesland, B., Rennie, A.: Shift-tail equivalence and an unbounded representative of the Cuntz-Pimsner extension. Ergod. Theory Dyn. Syst. (2015, to appear). arXiv:1512.03455Google Scholar
  16. 16.
    Hong, J.H., Szymański, W.: Quantum lens spaces and graph algebras. Pac. J. Math. 211, 249–263 (2003)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kajiwara, T., Pinzari, C., Watatani, Y.: Ideal structure and simplicity of the C–algebras generated by Hilbert bimodules. J. Funct. Anal. 159, 295–322 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Karoubi, M.: K-Theory: An Introduction. Grundlehren der Mathematischen Wissenschaften, vol. 226. Springer, Berlin (1978)Google Scholar
  19. 19.
    Montgomery, S.: Hopf Algebras and Their Actions on Rings. Regional Conference Series in Mathematics, vol. 82. American Mathematical Society, Providence, RI (1993)Google Scholar
  20. 20.
    Pimsner, M.: A class of C -algebras generalising both Cuntz-Krieger algebras and crossed products by \(\mathbb {Z}\). In: Free Probability Theory. Fields Institute Communications, vol. 12, pp. 189–212. American Mathematical Society, Providence, RI (1997)Google Scholar
  21. 21.
    Rennie, A., Robertson, D., Sims, A.: The extension class and KMS states for Cuntz-Pimsner algebras of some bi-Hilbertian bimodules. J. Topol. Anal. 09(02), 297 (2015). https://doi.org/10.1142/S1793525317500108 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Sitarz, A., Venselaar, J.J.: The Geometry of quantum lens spaces: real spectral triples and bundle structure. Math. Phys. Anal. Geom. 18, 1–19 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Vaksman, L., Soibelman, Ya.: The algebra of functions on the quantum group SU(n + 1) and odd-dimensional quantum spheres. Leningr. Math. J. 2, 1023–1042 (1991)Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science, Institute for Mathematics, Astrophysics and Particle PhysicsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations