Vibration Isolation

  • André Preumont
Part of the Solid Mechanics and Its Applications book series (SMIA, volume 246)


This chapter addresses the problem of vibration isolation; the excitation may be harmonic or wide band. The chapter begins with the single-axis passive isolation: linear viscous isolator and relaxation isolator; an electromagnetic realization of the relaxation isolator is discussed. Next, the active isolation is considered: the celebrated single-axis sky-hook damper and its Integral Force Feedback (IFF) implementation. The difference between the two implementations when applied to flexible structures is highlighted, and the superiority (due to built-in stability properties) of the IFF is pointed out. Next, after a brief discussion of the payload isolation in spacecraft, the six-axis isolation is considered with a Gough–Stewart platform; the passive isolation when the legs consist of relaxation isolators and the active isolation when the legs are controlled according to the IFF are discussed and compared. The influence of the modal spread on performance is analyzed, as well as the parasitic stiffness of the spherical joints of the Stewart platform. Finally, a quarter-car model of a vehicle suspension is briefly analyzed. The chapter concludes with a short list of references and a set of problems.


Vibration isolation Passive isolator Relaxation isolator Sky-hook damper Integral Force Feedback (IFF) Payload isolation Gough–Stewart platform Car suspension 


  1. 1.
    Abu-Hanieh A (2003) Active isolation and damping of vibrations via Stewart platform. Ph.D. thesis, Université Libre de Bruxelles, Active Structures LaboratoryGoogle Scholar
  2. 2.
    Bourcier de Carbon Ch (1947) Perfectionnement à la suspension des véhicules routiers. Amortisseur à relaxation. Comptes Rendus de l’Académie des Sciences de Paris, vol 225. Juillet-Déc, pp 722–724Google Scholar
  3. 3.
    Bronowicki AJ (2006) Vibration isolator for large space telescopes. AIAA J Spacecr Rocket 43(1):45–53CrossRefGoogle Scholar
  4. 4.
    Chalasani RM (1984) Ride performance potential of active suspension systems, part 1: simplified analysis based on a quarter-car model. In: ASME symposium on simulation and control of ground vehicles and transportation systems, Anaheim, CAGoogle Scholar
  5. 5.
    Cobb RG, Sullivan JM, Das A, Davis LP, Hyde TT, Davis T, Rahman ZH, Spanos JT (1999) Vibration isolation and suppression system for precision payloads in space. Smart Mater Struct 8:798–812CrossRefGoogle Scholar
  6. 6.
    Collins SA, von Flotow AH (1991) Active vibration isolation for spacecraft. In: 42nd IAF congress, paper No IAF-91-289, MontrealGoogle Scholar
  7. 7.
    de Marneffe B (2007) Active and passive vibration isolation and damping via shunted transducers. Ph.D. thesis, Université Libre de Bruxelles, Active Structures LaboratoryGoogle Scholar
  8. 8.
    de Marneffe B, Avraam M, Deraemaeker A, Horodinca M, Preumont A (2009) Vibration isolation of precision payloads: a six-axis electromagnetic relaxation isolator. AIAA J Guid Control Dyn 32(2):395–401CrossRefGoogle Scholar
  9. 9.
    Geng Z, Haynes L (1994) Six degree of freedom active vibration isolation system using the Stewart platforms. IEEE Trans Control Syst Technol 2(1):45–53CrossRefGoogle Scholar
  10. 10.
    Hauge GS, Campbell ME (2004) Sensors and control of a spaced-based six-axis vibration isolation system. J Sound Vib 269:913–931CrossRefGoogle Scholar
  11. 11.
    Hyde TT, Anderson EH (1996) Actuator with built-in viscous damping for isolation and structural control. AIAA J 34(1):129–135CrossRefGoogle Scholar
  12. 12.
    Hrovat D (1997) Survey of advanced suspension developments and related optimal control applications. Automatica 33(10):1781–1817MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kaplow CE, Velman JR (1980) Active local vibration isolation applied to a flexible telescope. AIAA J Guid Control Dyn 3:227–233CrossRefGoogle Scholar
  14. 14.
    Laskin RA, Sirlin SW (1986) Future payload isolation and pointing system technology. AIAA J Guid Control Dyn 9:469–477CrossRefGoogle Scholar
  15. 15.
    Karnopp DC, Trikha AK (1969) Comparative study of optimization techniques for Shock Vib isolation. Trans ASME J Eng Ind Ser B 91:1128–1132CrossRefGoogle Scholar
  16. 16.
    Mcinroy JE, O’brien JF, Neat GW (1999) Precise, fault-tolerant pointing using a Stewart platform. IEEE/ASME Trans Mech 4(1):91–95Google Scholar
  17. 17.
    Mcinroy JE, Neat GW, O’brien JF (1999) A robotic approach to fault-tolerant, precision pointing. IEEE Robot Autom Mag 6:24–37Google Scholar
  18. 18.
    Mcinroy JE, Hamann J (2000) Design and control of flexure jointed hexapods. IEEE Trans Robot 16(4):372–381CrossRefGoogle Scholar
  19. 19.
    Mcinroy JE (2002) Modelling and design of flexure jointed Stewart platforms for control purposes. IEEE/ASME Trans Mech 7(1):95–99CrossRefGoogle Scholar
  20. 20.
    Preumont A, François A, Bossens F, Abu-Hanieh A (2002) Force feedback versus acceleration feedback in active vibration isolation. J Sound Vib 257(4):605–613CrossRefGoogle Scholar
  21. 21.
    Preumont A, Horodinca M, Romanescu I, de Marneffe B, Avraam M, Deraemaeker A, Bossens F, Abu-Hanieh A (2007) A six-axis single stage active vibration isolator based on Stewart platform. J Sound Vib 300:644–661CrossRefGoogle Scholar
  22. 22.
    Preumont A, Seto K (2008) Active control of structures. Wiley, New YorkCrossRefGoogle Scholar
  23. 23.
    Rahman ZH, Spanos JT, Laskin RA (1998) Multi-axis vibration isolation, suppression and steering system for space observational applications. In: SPIE symposium on astronomical telescopes and instrumentation, Kona-HawaiiGoogle Scholar
  24. 24.
    Rivin EI (2003) Passive vibration isolation. ASME Press, New YorkCrossRefGoogle Scholar
  25. 25.
    Spanos J, Rahman Z, Blackwood G (1995) A soft 6-axis active vibration isolator. In: Proceedings of the IEEE American control conference, pp 412–416Google Scholar
  26. 26.
    Stewart D (1965–66) A platform with six degrees of freedom. Proc Inst. Mech Eng 180(15):371–386Google Scholar
  27. 27.
    Thayer D, Vagners J, von Flotow A, Hardman C, Scribner K (1998) Six-axis vibration isolation system using soft actuators and multiple sensors. AAS 98–064:497–506Google Scholar
  28. 28.
    Thayer D, Campbell M, Vagners J, von Flotow A (2002) Six-axis vibration isolation system using soft actuators and multiple sensors. J Spacecr Rocket 39(2):206–212CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Active Structures LaboratoryUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations