Assessments of Sc-Containing Ternary Systems Al–Sc–Ti and Al–Sc–Zr Within the Thermodynamic Database for Aluminium Alloys, TCAL5

  • Hai-Lin Chen
  • Qing Chen
  • Paul Mason
Conference paper
Part of the The Minerals, Metals & Materials Series book series (MMMS)


This paper presents the assessment of two Sc-containing ternary systems, Al–Sc–Ti and Al–Sc–Zr , within the project for developing the thermodynamic database for aluminium alloys TCAL5. A brief review was made on the Al-rich phase equilibria, which are relevant to the (Al) matrix phase and the hardening precipitate Al3Sc. The assessment highlights the modeling of molar volume of the Al3Sc phase. Using the resulting dataset, the lattice mismatch between the Al3Sc precipitates and the (Al) matrix phase was calculated at different temperatures and different Ti and Zr contents. The lattice mismatch would be useful for estimating the critical size at which precipitates start to loss coherency.


Thermodynamic database CALPHAD Aluminium alloys Phase equilibria Lattice mismatch 


  1. 1.
    H.L. Lukas HL, S.G. Fries SG, B. Sundman B, (2007) Computational thermodynamics: the Calphad method, Cambridge University Press, New York, 2007.Google Scholar
  2. 2.
    Sundman B (1991) Thermo-Calc, a general tool for phase diagram calculations. In: Doyama M, Suzuki T, Kihara J, Yamamoto R (Eds.), Computer aided innovation of new materials. North Holland, Amsterdam.CrossRefGoogle Scholar
  3. 3.
    Novotny GM, Ardell AJ (2001) Precipitation of Al3Sc in binary Al–Sc alloys, Mater. Sci. Eng. A 318: 144–154.CrossRefGoogle Scholar
  4. 4.
    Bo H, Liu LB, Jin ZP (2010) Thermodynamic analysis of Al–Sc, Cu–Sc and Al–Cu–Sc system, J. Alloys Compd. 490: 318–325.CrossRefGoogle Scholar
  5. 5.
    Roeyset J, Ryum N (2005) Scandium in aluminium alloys, International Materials Reviews, 50(1): 19–44.CrossRefGoogle Scholar
  6. 6.
    Guzei LS (1993) Aluminium–Scandium–Titanium, Ternary Alloys, VCH, Vol. 8: 248–249.Google Scholar
  7. 7.
    Harada Y, Dunand DC (2002) Microstructure of Al3Sc with ternary transition-metal additions, Mater. Sci. Eng. A, 329–331: 686-695.Google Scholar
  8. 8.
    van Dalen ME, Dunand DC, Seidman DN (2003) Precipitation Strengthening in Al3(Sc,Ti) Alloys, Materials Science and Technology 2003 Meeting, Chicago, IL, United States, 195–201.Google Scholar
  9. 9.
    van Dalen M, Dunand D, Seidman D (2005) Precipitation-Strengthened Al-Sc-Ti Alloys, TMS conference, San Francisco (2005).Google Scholar
  10. 10.
    Sokolovskaya EM, Kazakova EF, Podd’yakova EI, Ezhov AA (1997) Time-temperature section of the phase diagram of the Al–Sc–Zr system at 500 °C, Met. Sci. Heat Treat. 39(5–6): 211–213.CrossRefGoogle Scholar
  11. 11.
    Xie J, Liu S, Zhang F, Du Y (2017) Phase Equilibria of the Al–Sc–Zr Ternary System at 500 °C, J. Phase Equilib. Diff. 38 (4): 493–501.CrossRefGoogle Scholar
  12. 12.
    Bo H, Liu LB, Hu JL, Jin ZP (2017) Experimental study and thermodynamic modeling of the Al–Sc–Zr system, Computational Mater. Sci. 133: 82–92.CrossRefGoogle Scholar
  13. 13.
    Colinet C, Pasturel A (2002) Ab initio calculation of the formation energies of L12, D022, D023 and one dimensional long period structures in TiAl3 compound, Intermetallics 10(8): 751–764.Google Scholar
  14. 14.
    Lu X, Selleby M, Sundman B (2005) Implementation of a new model for pressure dependence of condensed phases in Thermo-Calc, Calphad 29: 49–55.CrossRefGoogle Scholar
  15. 15.
    Zalutskaya OI, Kontsevoy VG, Karamyshev NI, Ryabov VR, Zalutskii II (1970) Dopovidi Akademii Nauk Ukrains’koi RSR, Seriya A: Fiziko-Tekhnichni ta Matematichni Nauki, 751–753.Google Scholar
  16. 16.
    Schuster JC, Bauer J (1980) The ternary systems Sc–Al–N and Y–Al–N, J. Less-Common Met. 109: 345–350.Google Scholar
  17. 17.
    Harada Y, Dunand DC (2009) Microstructure of Al3Sc with ternary rare earth additions, Intermetallics 17: 17–24.CrossRefGoogle Scholar
  18. 18.
    Srinivasan S, Desch PB, Schwarz RB (1991) Metastable phases in the Al3X (X = Ti, Zr, and Hf) intermetallic system, Scri. Metall. Mater. 25(11): 2513–2516.CrossRefGoogle Scholar
  19. 19.
    Fu CL (1990) Select Electronic, elastic, and fracture properties of trialuminide alloys: Al3Sc and Al3Ti Electronic, elastic, and fracture properties of trialuminide alloys: Al3Sc and Al3Ti, J. Mater. Res. 5: 971–979.Google Scholar
  20. 20.
    Hong T, Watson-Yang TJ, Freeman AJ, Oguchi T, Xu JH (1990) Crystal structure, phase stability, and electronic structure of Ti–Al intermetallics: TiAl3, Phys. Rev. B 41: 12462.CrossRefGoogle Scholar
  21. 21.
    Xu J, Freeman AJ (1990) Phase stability and electronic structure of ScAl3 and ZrAl3 and of Sc-stabilized cubic ZrAl3 Precipitates, Phys. Rev. B. 41,12553 (1990).Google Scholar
  22. 22.
    Saha S, Todorova TZ, Zwanziger JW (2015) Temperature dependent lattice misfit and coherency of Al3X (X = Sc, Zr, Ti and Nb) particles in an Al matrix, Acta Mater. 89: 109–115.CrossRefGoogle Scholar
  23. 23.
    Nes E (1972) Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al–Zr alloys, Acta Metall. 20: 499–506.CrossRefGoogle Scholar
  24. 24.
    Bonefacic A, Tonejc A (1969) Metastable Solubility of Tungsten in Aluminium, Trans. Metall. Soc. Aime 245: 1664.Google Scholar
  25. 25.
    Ocko M, Babic E, Krsmik R, Girt E, Leontic B (1976) Some properties of AlSc solid solutions, J. Phys. F: Met. Phys. 6(5): 703.CrossRefGoogle Scholar
  26. 26.
    Nix F, MacNair D (1941) The thermal expansion of pure metals: copper, gold, aluminium, nickel, and iron, Phys. Rev. 60 (8): 597.CrossRefGoogle Scholar
  27. 27.
    Wilson A (1941) The thermal expansion of aluminium from 0 to 650 °C, Proc. Phys. Soc., London 53 (3): 235.CrossRefGoogle Scholar
  28. 28.
    Iwamura S, Miura Y (2004) Loss in coherency and coarsening behaviour of Al3Sc precipitates, Acta Mater. 52: 591–600.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2018

Authors and Affiliations

  1. 1.Thermo-Calc Software ABSolnaSweden
  2. 2.Thermo-Calc Software Inc.McmurrayUSA

Personalised recommendations