Advertisement

Challenges of Alkoxysilane-Based Consolidants for Carbonate Stones: From Neat TEOS to Multipurpose Hybrid Nanomaterials

Chapter

Abstract

Alkoxysilane-based products have been used in conservation interventions to consolidate stone-built heritage, although with limited success in carbonate stones. This chapter overviews drawbacks and challenges of carbonate stone consolidation, with a focus on important phenomena related to the carbonate media particularities (possible disturbance of sol-gel routes and lack of strong chemical bond with calcite) and issues related to extended hydrolysis reactions and susceptibility to crack of the most common alkoxysilane-based products. While significant advances concerning crack susceptibility have been widely highlighted, more recent developments regarding the remaining phenomena are still scarce. Nevertheless, novel alkoxysilane-based products, based on hybrid materials, surfactant templates, nanoparticles, organosilanes, and others, have shown potential to treat carbonate stones. Some of these strategies led to the development of multifunctional products, but doubts persist whether this multifaceted role is always advantageous. This chapter discusses the most relevant research advances on the field and critically addresses issues that are worth to research further.

Keywords

Carbonate stones Functional surfaces Alkoxysilanes Consolidation Ethyl silicate 

Notes

Acknowledgments

The authors acknowledge Fundação para a Ciência e Tecnologia (FCT) for the financial support, CQE—UID/QUI/00100/2013. The author B. Sena da Fonseca also acknowledges Fundação para a Ciência e Tecnologia (FCT) for the financial support through grant SFRH/BD/96226/2013.

References

  1. 1.
    Sasse HR. Engineering aspects of monument preservation. In: Restoration of buildings and monuments. 2001. p. 197.Google Scholar
  2. 2.
    Clifton JR. Stone consolidating materials: a status report. Washington, DC: U.S. G.P.O.; 1980.CrossRefGoogle Scholar
  3. 3.
    Price CA, Doehne E. Stone conservation: an overview of current research. Santa Monica, CA: Getty Conservation Institute; 2011.Google Scholar
  4. 4.
    Ginell W, Wessel D, Searles C. ASTM E2167–01 standard guide for selection and use of stone consolidants. West Conshohocken, PA: ASTM International; 2001.Google Scholar
  5. 5.
    Clifton JR, Frohnsdorff GJC. Stone-consolidating materials: a status report. In: Conservation of historic stone buildings and monuments report, C.o.C.o.H.S.B.a.M.N. Materials. 1982. p. 287–311.Google Scholar
  6. 6.
    Foulks WG, editor. Historic Building Façades: the manual for maintenance and rehabilitation. New York: Wiley; 1997. p. 203.Google Scholar
  7. 7.
    Natali I, et al. Innovative consolidating products for stone materials: field exposure tests as a valid approach for assessing durability. Heritage Science. 2015;3(1):6.CrossRefGoogle Scholar
  8. 8.
    Grimmer AE. A glossary of historic masonry deterioration problems and preservation treatments. In: Department of the interior, national park service, preservation assistance division. Washington, DC: For sale by the Supt. of Docs., U.S. G.P.O.; 1984. p. 65.Google Scholar
  9. 9.
    ICOM-CC, Resolution adopted by the ICOM-CC membership at the 15th Triennial Conference, New Delhi, 22–26 Sep 2008. p. 2.Google Scholar
  10. 10.
    Fidler J. Stone consolidants: inorganic treatments. Conserv Bull. 2004;44:33–5.Google Scholar
  11. 11.
    Matteini M. Inorganic treatments for the consolidation and protection of stone artefacts. Conserv Sci Cult Herit. 2008;8:13–27.Google Scholar
  12. 12.
    Cassar M. Education and training needs for the conservation and protection of cultural heritage: Is it a case of'one size fits all'? Education and training needs for the conservation and protection of cultural Heritage. 2003:159–63.Google Scholar
  13. 13.
    Hauff G. Durability and retreatability of ethyl silicate treatments. Abstract of International Course on Stone Conservation SC13 – The Getty Conservation Institute. 2013. p. 1.Google Scholar
  14. 14.
    Wheeler G, G.C. Institute. Alkoxysilanes and the consolidation of stone. Los Angeles, CA: Getty Publications; 2005.Google Scholar
  15. 15.
    Ozturk I. Alkoxysilanes consolidation of stone and earthen building materials. University of Pennsylvania. 1992. p. 100.Google Scholar
  16. 16.
    Delgado Rodrigues J. Consolidation of decayed stones. A delicate problem with few practical solutions. In: Proc. Int. Seminar on Historical Construction. Guimarães. 2001. p. 3–14.Google Scholar
  17. 17.
    Scherer GW, Wheeler GS. Silicate consolidants for stone. Key Eng Mater. 2009;391:1–25.CrossRefGoogle Scholar
  18. 18.
    De Clercq H, De Zanche S, Biscontin G. TEOS and time: the influence of application schedules on the effectiveness of ethyl silicate based Consolidants/Tetraethoxysilan (TEOS) und die Zeit: der Einfluss unterschiedlicher Anwendungsfolgen auf die Wirksamkeit von Steinfestigern auf der basis von Ethylsilikat. Restoration of Buildings and Monuments. 2007;13(5):305–18.CrossRefGoogle Scholar
  19. 19.
    Snethlage R. Stone conservation, Springer Berlin Heidelberg. In: Siegesmund S, Snethlage R, editors. Stone in architecture. Berlin, Heidelberg; 2014. p. 415–550.Google Scholar
  20. 20.
    Tesser E, et al. Study of the stability of siloxane stone strengthening agents. Polym Degrad Stab. 2014;110:232–40.CrossRefGoogle Scholar
  21. 21.
    Brinker CJ. Sol-Gel processing of silica. In: Colloidal silica. CRC Press; 2005. p. 615–35.Google Scholar
  22. 22.
    Sakka S. Handbook of sol-gel science and technology. 1. Sol-gel processing. Boston: Kluwer Academic Publishers; 2005.Google Scholar
  23. 23.
    Milea CA, Bogatu C, Duta A. The influence of parameters in silica sol-gel process. Braşov Bulletin of the Transilvania University. 2011;4(53):59–66.Google Scholar
  24. 24.
    Parkhill R. Investigation of water based silica and organically modified silicate sol-gel systems. Oklahoma: University of Oklahoma; 1999. p. 253.Google Scholar
  25. 25.
    Belton DJ, Deschaume O, Perry CC. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J. 2012;279(10):1710–20.CrossRefGoogle Scholar
  26. 26.
    Hernández CS, et al. DBTL as neutral catalyst on TEOS/PDMS anticorrosive coating. J Sol-Gel Sci Technol. 2016:1–8.Google Scholar
  27. 27.
    Cervantes J, Zárraga R, Salazar-Hernández C. Organotin catalysts in organosilicon chemistry. Appl Organomet Chem. 2012;26(4):157–63.CrossRefGoogle Scholar
  28. 28.
    Schiavon G. Sol-Gel derived nanocomposites synthesis. München: Technischen Universität München; 2000. p. 152.Google Scholar
  29. 29.
    Méndez-Vivar J. The interaction of dibutyltin dilaureate with tetraethyl orthosilicate in sol-gel systems. J Sol-Gel Sci Technol. 2006;38(2):159–66.CrossRefGoogle Scholar
  30. 30.
    Goins ES. Alkoxysilane stone consolidants: the effect of the stone substrate upon the polymerization process. London: University College London (University of London); 1995. p. 200.Google Scholar
  31. 31.
    Morris RK, Coldstream N, Turner R. The West front of TINTERN Abbey Church, Monmouthshire. Antiqu J. 2015;95:119–50.CrossRefGoogle Scholar
  32. 32.
    Horie CV. Materials for conservation: organic consolidants, adhesives and coatings. Amsterdam: Butterworth-Heinemann; 2010.Google Scholar
  33. 33.
    Ruedrich J, Weiss T, Siegesmund S. Thermal behaviour of weathered and consolidated marbles. Geol Soc Lond, Spec Publ. 2002;205(1):255–71.CrossRefGoogle Scholar
  34. 34.
    Charola AE, Wheeler GE, Freund GG. The influence of relative humidity in the polymerization of methyl trimethoxy silane. Stud Conserv. 1984;29(Suppl 1):177–81.CrossRefGoogle Scholar
  35. 35.
    Franzoni E, Graziani G, Sassoni E. TEOS-based treatments for stone consolidation: acceleration of hydrolysis–condensation reactions by poulticing. J Sol-Gel Sci Technol. 2015;74(2):398–405.CrossRefGoogle Scholar
  36. 36.
    Karatasios I, et al. Modification of water transport properties of porous building stones caused by polymerization of silicon-based consolidation products. In: 16th International Conference on Polymers and Organic Chemistry. Hersonissos, Crete, Greece; 2016.Google Scholar
  37. 37.
    Mosquera MJ, et al. New nanomaterials for consolidating stone. Langmuir. 2008;24(6):2772–8.CrossRefGoogle Scholar
  38. 38.
    Mosquera MJ, Pozo J, Esquivias L. Stress during drying of two stone consolidants applied in monumental conservation. J Sol-Gel Sci Technol. 2003;26(1–3):1227–31.CrossRefGoogle Scholar
  39. 39.
    Berto T, Godts S, De Clercq H. The effects of commercial ethyl silicate based consolidation products on limestone. In: Science and art: a future for stone. 2016. p. 271–9.Google Scholar
  40. 40.
    Ferreira Pinto AP, Delgado Rodrigues J. Consolidation of carbonate stones: influence of treatment procedures on the strengthening action of consolidants. J Cult Herit. 2012;13(2):154–66.CrossRefGoogle Scholar
  41. 41.
    Wheeler G, et al. Toward a better understanding of B72 acrylic resin/methyltrimethoxysilane stone consolidants. In: MRS Proceedings. Cambridge Univ Press; 1990.Google Scholar
  42. 42.
    Danehey C, Wheeler GS, Su SC. The influence of quartz and calcite on the polymerization of methyl-trimetoxysilane. In: Delgado Rodrigues J, Henriques F, editors. Seventh International Congress on the deterioration and conservation of stone. Lisbon: LNEC; 1992. p. 1043–52.Google Scholar
  43. 43.
    Goins ES, Wheeler G, Wypyski MT. Alkoxysilane film formation on quartz and calcite crystal surfaces. In: Proceedings of the Eighth International Congress on deterioration and conservation of stone. Berlin; 1996.Google Scholar
  44. 44.
    Goins ES, et al. The effect of sandstone, limestone, marble and sodium chloride on the polymerisation of MTMOS solutions. In: Proceedings of 8th Congress on deterioration and conservation of stone. Berlin; 1996. p. 1243–54.Google Scholar
  45. 45.
    Sena da Fonseca B, et al. Development of formulations based on TEOS-dicarboxylic acids for consolidation of carbonate stones. New J Chem. 2016;40(9):7493–503.CrossRefGoogle Scholar
  46. 46.
    Wheeler G, Fleming S, Ebersole S. Comparative strengthening effect of several consolidants on Wallace Sandstone and Indiana Limestone. In: Proceedings of the 7th International Congress on deterioration and conservation of stone. Lisbon: LNEC; 1992.Google Scholar
  47. 47.
    Sena da Fonseca B, et al. TEOS-based consolidants for carbonate stones: the role of N1-(3-trimethoxysilylpropyl)diethylenetriamine. New J Chem. 2017;41(6):2458–67.CrossRefGoogle Scholar
  48. 48.
    Ferreira Pinto AP, Delgado Rodrigues J. Hydroxylating conversion treatment and alkoxysilane coupling agent as pre-treatment for the consolidation of limestones with ethyl silicate. In: Mimoso JDRJM, editor. Proceedings of the International Symposium on Stone Consolidation in Cultural Heritage – Research and Practice. Lisbon: LNEC; 2008. p. 131–40.Google Scholar
  49. 49.
    Xu F, et al. Use of coupling agents for increasing passivants and cohesion ability of consolidant on limestone. Prog Org Coat. 2014;77(11):1613–8.CrossRefGoogle Scholar
  50. 50.
    Wacker, Technical data sheet for SILRES® BS OH 100, SILRES, editor. 2014. p. 3.Google Scholar
  51. 51.
    Zornoza-Indart A, et al. Consolidation of a Tunisian bioclastic calcarenite: from conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Constr Build Mater. 2016;116:188–202.CrossRefGoogle Scholar
  52. 52.
    Karatasios I, et al. Modification of water transport properties of porous building stones caused by polymerization of silicon-based consolidation products. In: Pure and Applied Chemistry. 2017.Google Scholar
  53. 53.
    Naidu S, Liu C, Scherer GW. Novel hydroxyapatite-based consolidant and the acceleration of hydrolysis of silicate-based consolidants. MRS Online Proceedings Library Archive. 2014;1656.Google Scholar
  54. 54.
    Naidu S, Liu C, Scherer GW. Hydroxyapatite-based consolidant and the acceleration of hydrolysis of silicate-based consolidants. J Cult Herit. 2015;16(1):94–101.CrossRefGoogle Scholar
  55. 55.
    Sassoni E, et al. Consolidation of a porous limestone by means of a new treatment based on hydroxyapatite. In: Proceedings of 12th International Congress on deterioration and conservation of stone. New York City (USA); 2012.Google Scholar
  56. 56.
    Illescas JF, Mosquera MJ. Producing surfactant-synthesized nanomaterials in situ on a building substrate, without volatile organic compounds. ACS Appl Mater Interfaces. 2012;4(8):4259–69.CrossRefGoogle Scholar
  57. 57.
    Zarzuela R, et al. CuO/SiO2 Nanocomposites: a multifunctional coating for application on building stone. Mater Des. 2017;114:364–72.CrossRefGoogle Scholar
  58. 58.
    Pinho L, et al. A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci. 2013;275(0):389–96.CrossRefGoogle Scholar
  59. 59.
    Han X, et al. Bridged siloxanes as novel potential hybrid consolidants for ancient Qin terracotta. Prog Org Coat. 2016;101:416–22.CrossRefGoogle Scholar
  60. 60.
    Remzova M, et al. Effect of modified ethylsilicate consolidants on the mechanical properties of sandstone. Constr Build Mater. 2016;112:674–81.CrossRefGoogle Scholar
  61. 61.
    Scherer GW. Theory of drying. J Am Ceram Soc. 1990;73(1):3–14.CrossRefGoogle Scholar
  62. 62.
    Scherer GW, et al. Shrinkage of silica gels aged in TEOS. J Non-Cryst Solids. 1996;202(1):42–52.CrossRefGoogle Scholar
  63. 63.
    Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Boston: Academic Press; 1990.Google Scholar
  64. 64.
    Miliani C, Velo-Simpson ML, Scherer GW. Particle-modified consolidants: a study on the effect of particles on sol–gel properties and consolidation effectiveness. J Cult Herit. 2007;8(1):1–6.CrossRefGoogle Scholar
  65. 65.
    Liu R, et al. Preparation of three-component TEOS-based composites for stone conservation by sol–gel process. J Sol-Gel Sci Technol. 2013;68(1):19–30.CrossRefGoogle Scholar
  66. 66.
    Salazar-Hernández C, et al. Conservation of building materials of historic monuments using a hybrid formulation. J Cult Herit. 2015;16(2):185–91.CrossRefGoogle Scholar
  67. 67.
    Delgado Rodrigues J, Costa D. Occurrence and behaviour of interfaces in consolidated stones, in Structural studies of historical buildings IV. Volume 1: architectural studies, materials and analysis. Computational Mechanics Publications; 1995. p. 245–52.Google Scholar
  68. 68.
    Zárraga R, et al. Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J Cult Herit. 2010;11(2):138–44.CrossRefGoogle Scholar
  69. 69.
    Mackenzie J, Huang Q, Iwamoto T. Mechanical properties of ormosils. J Sol-Gel Sci Technol. 1996;7(3):151–61.CrossRefGoogle Scholar
  70. 70.
    Xu F, Li D. Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone protective materials. J Sol-Gel Sci Technol. 2013;65:212–9.CrossRefGoogle Scholar
  71. 71.
    De Rosario I, et al. Effectiveness of a novel consolidant on granite: laboratory and in situ results. Constr Build Mater. 2015;76:140–9.CrossRefGoogle Scholar
  72. 72.
    Illescas JF, Mosquera MJ. Surfactant-synthesized PDMS/silica nanomaterials improve robustness and stain resistance of carbonate stone. J Phys Chem C. 2011;115(30):14624–34.CrossRefGoogle Scholar
  73. 73.
    Mosquera MJ, de los Santos DM, Rivas T. Surfactant-synthesized ormosils with application to stone restoration. Langmuir. 2010;26(9):6737–45.CrossRefGoogle Scholar
  74. 74.
    Mosquera MJ, et al. New nanomaterials for protecting and consolidating stone. J Nano Res. 2009;8:1–12.CrossRefGoogle Scholar
  75. 75.
    Pinho L, Mosquera MJ. Titania-silica nanocomposite photocatalysts with application in stone self-cleaning. J Phys Chem C. 2011;115(46):22851–62.CrossRefGoogle Scholar
  76. 76.
    Pinho L, Mosquera MJ. Photocatalytic activity of TiO2–SiO2 nanocomposites applied to buildings: influence of particle size and loading. Appl Catal B Environ. 2013;134–135:205–21.CrossRefGoogle Scholar
  77. 77.
    Kapridaki C, Maravelaki N-P. TiO2–SiO2–PDMS nanocomposites with self-cleaning properties for stone protection and consolidation, vol. 416. London: Geological Society Special Publication; 2015. p. 1.Google Scholar
  78. 78.
    Li D, et al. The effect of adding PDMS-OH and silica nanoparticles on sol–gel properties and effectiveness in stone protection. Appl Surf Sci. 2013;266:368–74.CrossRefGoogle Scholar
  79. 79.
    Derluyn H, et al. Salt crystallization in hydrophobic porous materials. In: Hydrophobe V. Aedificatio Publishers; 2008.Google Scholar
  80. 80.
    Scherer GW, Wheeler GS. Silicate consolidants for stone. Key Eng Mater. 2009;391:1–25.CrossRefGoogle Scholar
  81. 81.
    Sena da Fonseca B, et al. Polyethylene glycol oligomers as siloxane modificators in consolidation of carbonate stones. Pure Appl Chem. 2016;88(12):1117–28.CrossRefGoogle Scholar
  82. 82.
    Kapridaki C, et al. Producing self-cleaning, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions for stone protection and consolidation. In: Self-cleaning coatings. 2016. p. 105–41.Google Scholar
  83. 83.
    Verganelaki A, et al. Characterization of a newly synthesized calcium oxalate-silica nanocomposite and evaluation of its consolidation effect on limestones. In: Toniolo L, Boriani M, Guidi G, editors. Built heritage: monitoring conservation management. Cham: Springer; 2015. p. 391–402.Google Scholar
  84. 84.
    Prado AGS, Airoldi C. Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas. J Mater Chem. 2002;12(12):3823–6.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Centro de Química Estrutural, CQE, DEQ, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  2. 2.Department of Civil Engineering, Architecture and Georesources, CERIS, ICIST, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.Escola Superior de Tecnologia de Setúbal, Centro de Desenvolvimento do Produto e Transferência de TecnologiaInstituto Politécnico de SetúbalSetúbalPortugal

Personalised recommendations