Skip to main content

Challenges of Alkoxysilane-Based Consolidants for Carbonate Stones: From Neat TEOS to Multipurpose Hybrid Nanomaterials

Abstract

Alkoxysilane-based products have been used in conservation interventions to consolidate stone-built heritage, although with limited success in carbonate stones. This chapter overviews drawbacks and challenges of carbonate stone consolidation, with a focus on important phenomena related to the carbonate media particularities (possible disturbance of sol-gel routes and lack of strong chemical bond with calcite) and issues related to extended hydrolysis reactions and susceptibility to crack of the most common alkoxysilane-based products. While significant advances concerning crack susceptibility have been widely highlighted, more recent developments regarding the remaining phenomena are still scarce. Nevertheless, novel alkoxysilane-based products, based on hybrid materials, surfactant templates, nanoparticles, organosilanes, and others, have shown potential to treat carbonate stones. Some of these strategies led to the development of multifunctional products, but doubts persist whether this multifaceted role is always advantageous. This chapter discusses the most relevant research advances on the field and critically addresses issues that are worth to research further.

Keywords

  • Carbonate stones
  • Functional surfaces
  • Alkoxysilanes
  • Consolidation
  • Ethyl silicate

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-72260-3_9
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-72260-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7
Fig. 9.8
Fig. 9.9
Fig. 9.10
Fig. 9.11

References

  1. Sasse HR. Engineering aspects of monument preservation. In: Restoration of buildings and monuments. 2001. p. 197.

    Google Scholar 

  2. Clifton JR. Stone consolidating materials: a status report. Washington, DC: U.S. G.P.O.; 1980.

    CrossRef  Google Scholar 

  3. Price CA, Doehne E. Stone conservation: an overview of current research. Santa Monica, CA: Getty Conservation Institute; 2011.

    Google Scholar 

  4. Ginell W, Wessel D, Searles C. ASTM E2167–01 standard guide for selection and use of stone consolidants. West Conshohocken, PA: ASTM International; 2001.

    Google Scholar 

  5. Clifton JR, Frohnsdorff GJC. Stone-consolidating materials: a status report. In: Conservation of historic stone buildings and monuments report, C.o.C.o.H.S.B.a.M.N. Materials. 1982. p. 287–311.

    Google Scholar 

  6. Foulks WG, editor. Historic Building Façades: the manual for maintenance and rehabilitation. New York: Wiley; 1997. p. 203.

    Google Scholar 

  7. Natali I, et al. Innovative consolidating products for stone materials: field exposure tests as a valid approach for assessing durability. Heritage Science. 2015;3(1):6.

    CrossRef  Google Scholar 

  8. Grimmer AE. A glossary of historic masonry deterioration problems and preservation treatments. In: Department of the interior, national park service, preservation assistance division. Washington, DC: For sale by the Supt. of Docs., U.S. G.P.O.; 1984. p. 65.

    Google Scholar 

  9. ICOM-CC, Resolution adopted by the ICOM-CC membership at the 15th Triennial Conference, New Delhi, 22–26 Sep 2008. p. 2.

    Google Scholar 

  10. Fidler J. Stone consolidants: inorganic treatments. Conserv Bull. 2004;44:33–5.

    Google Scholar 

  11. Matteini M. Inorganic treatments for the consolidation and protection of stone artefacts. Conserv Sci Cult Herit. 2008;8:13–27.

    Google Scholar 

  12. Cassar M. Education and training needs for the conservation and protection of cultural heritage: Is it a case of'one size fits all'? Education and training needs for the conservation and protection of cultural Heritage. 2003:159–63.

    Google Scholar 

  13. Hauff G. Durability and retreatability of ethyl silicate treatments. Abstract of International Course on Stone Conservation SC13 – The Getty Conservation Institute. 2013. p. 1.

    Google Scholar 

  14. Wheeler G, G.C. Institute. Alkoxysilanes and the consolidation of stone. Los Angeles, CA: Getty Publications; 2005.

    Google Scholar 

  15. Ozturk I. Alkoxysilanes consolidation of stone and earthen building materials. University of Pennsylvania. 1992. p. 100.

    Google Scholar 

  16. Delgado Rodrigues J. Consolidation of decayed stones. A delicate problem with few practical solutions. In: Proc. Int. Seminar on Historical Construction. Guimarães. 2001. p. 3–14.

    Google Scholar 

  17. Scherer GW, Wheeler GS. Silicate consolidants for stone. Key Eng Mater. 2009;391:1–25.

    CrossRef  Google Scholar 

  18. De Clercq H, De Zanche S, Biscontin G. TEOS and time: the influence of application schedules on the effectiveness of ethyl silicate based Consolidants/Tetraethoxysilan (TEOS) und die Zeit: der Einfluss unterschiedlicher Anwendungsfolgen auf die Wirksamkeit von Steinfestigern auf der basis von Ethylsilikat. Restoration of Buildings and Monuments. 2007;13(5):305–18.

    CrossRef  Google Scholar 

  19. Snethlage R. Stone conservation, Springer Berlin Heidelberg. In: Siegesmund S, Snethlage R, editors. Stone in architecture. Berlin, Heidelberg; 2014. p. 415–550.

    Google Scholar 

  20. Tesser E, et al. Study of the stability of siloxane stone strengthening agents. Polym Degrad Stab. 2014;110:232–40.

    CrossRef  Google Scholar 

  21. Brinker CJ. Sol-Gel processing of silica. In: Colloidal silica. CRC Press; 2005. p. 615–35.

    Google Scholar 

  22. Sakka S. Handbook of sol-gel science and technology. 1. Sol-gel processing. Boston: Kluwer Academic Publishers; 2005.

    Google Scholar 

  23. Milea CA, Bogatu C, Duta A. The influence of parameters in silica sol-gel process. Braşov Bulletin of the Transilvania University. 2011;4(53):59–66.

    Google Scholar 

  24. Parkhill R. Investigation of water based silica and organically modified silicate sol-gel systems. Oklahoma: University of Oklahoma; 1999. p. 253.

    Google Scholar 

  25. Belton DJ, Deschaume O, Perry CC. An overview of the fundamentals of the chemistry of silica with relevance to biosilicification and technological advances. FEBS J. 2012;279(10):1710–20.

    CrossRef  Google Scholar 

  26. Hernández CS, et al. DBTL as neutral catalyst on TEOS/PDMS anticorrosive coating. J Sol-Gel Sci Technol. 2016:1–8.

    Google Scholar 

  27. Cervantes J, Zárraga R, Salazar-Hernández C. Organotin catalysts in organosilicon chemistry. Appl Organomet Chem. 2012;26(4):157–63.

    CrossRef  Google Scholar 

  28. Schiavon G. Sol-Gel derived nanocomposites synthesis. München: Technischen Universität München; 2000. p. 152.

    Google Scholar 

  29. Méndez-Vivar J. The interaction of dibutyltin dilaureate with tetraethyl orthosilicate in sol-gel systems. J Sol-Gel Sci Technol. 2006;38(2):159–66.

    CrossRef  Google Scholar 

  30. Goins ES. Alkoxysilane stone consolidants: the effect of the stone substrate upon the polymerization process. London: University College London (University of London); 1995. p. 200.

    Google Scholar 

  31. Morris RK, Coldstream N, Turner R. The West front of TINTERN Abbey Church, Monmouthshire. Antiqu J. 2015;95:119–50.

    CrossRef  Google Scholar 

  32. Horie CV. Materials for conservation: organic consolidants, adhesives and coatings. Amsterdam: Butterworth-Heinemann; 2010.

    Google Scholar 

  33. Ruedrich J, Weiss T, Siegesmund S. Thermal behaviour of weathered and consolidated marbles. Geol Soc Lond, Spec Publ. 2002;205(1):255–71.

    CrossRef  Google Scholar 

  34. Charola AE, Wheeler GE, Freund GG. The influence of relative humidity in the polymerization of methyl trimethoxy silane. Stud Conserv. 1984;29(Suppl 1):177–81.

    CrossRef  Google Scholar 

  35. Franzoni E, Graziani G, Sassoni E. TEOS-based treatments for stone consolidation: acceleration of hydrolysis–condensation reactions by poulticing. J Sol-Gel Sci Technol. 2015;74(2):398–405.

    CrossRef  Google Scholar 

  36. Karatasios I, et al. Modification of water transport properties of porous building stones caused by polymerization of silicon-based consolidation products. In: 16th International Conference on Polymers and Organic Chemistry. Hersonissos, Crete, Greece; 2016.

    Google Scholar 

  37. Mosquera MJ, et al. New nanomaterials for consolidating stone. Langmuir. 2008;24(6):2772–8.

    CrossRef  Google Scholar 

  38. Mosquera MJ, Pozo J, Esquivias L. Stress during drying of two stone consolidants applied in monumental conservation. J Sol-Gel Sci Technol. 2003;26(1–3):1227–31.

    CrossRef  Google Scholar 

  39. Berto T, Godts S, De Clercq H. The effects of commercial ethyl silicate based consolidation products on limestone. In: Science and art: a future for stone. 2016. p. 271–9.

    Google Scholar 

  40. Ferreira Pinto AP, Delgado Rodrigues J. Consolidation of carbonate stones: influence of treatment procedures on the strengthening action of consolidants. J Cult Herit. 2012;13(2):154–66.

    CrossRef  Google Scholar 

  41. Wheeler G, et al. Toward a better understanding of B72 acrylic resin/methyltrimethoxysilane stone consolidants. In: MRS Proceedings. Cambridge Univ Press; 1990.

    Google Scholar 

  42. Danehey C, Wheeler GS, Su SC. The influence of quartz and calcite on the polymerization of methyl-trimetoxysilane. In: Delgado Rodrigues J, Henriques F, editors. Seventh International Congress on the deterioration and conservation of stone. Lisbon: LNEC; 1992. p. 1043–52.

    Google Scholar 

  43. Goins ES, Wheeler G, Wypyski MT. Alkoxysilane film formation on quartz and calcite crystal surfaces. In: Proceedings of the Eighth International Congress on deterioration and conservation of stone. Berlin; 1996.

    Google Scholar 

  44. Goins ES, et al. The effect of sandstone, limestone, marble and sodium chloride on the polymerisation of MTMOS solutions. In: Proceedings of 8th Congress on deterioration and conservation of stone. Berlin; 1996. p. 1243–54.

    Google Scholar 

  45. Sena da Fonseca B, et al. Development of formulations based on TEOS-dicarboxylic acids for consolidation of carbonate stones. New J Chem. 2016;40(9):7493–503.

    CrossRef  Google Scholar 

  46. Wheeler G, Fleming S, Ebersole S. Comparative strengthening effect of several consolidants on Wallace Sandstone and Indiana Limestone. In: Proceedings of the 7th International Congress on deterioration and conservation of stone. Lisbon: LNEC; 1992.

    Google Scholar 

  47. Sena da Fonseca B, et al. TEOS-based consolidants for carbonate stones: the role of N1-(3-trimethoxysilylpropyl)diethylenetriamine. New J Chem. 2017;41(6):2458–67.

    CrossRef  Google Scholar 

  48. Ferreira Pinto AP, Delgado Rodrigues J. Hydroxylating conversion treatment and alkoxysilane coupling agent as pre-treatment for the consolidation of limestones with ethyl silicate. In: Mimoso JDRJM, editor. Proceedings of the International Symposium on Stone Consolidation in Cultural Heritage – Research and Practice. Lisbon: LNEC; 2008. p. 131–40.

    Google Scholar 

  49. Xu F, et al. Use of coupling agents for increasing passivants and cohesion ability of consolidant on limestone. Prog Org Coat. 2014;77(11):1613–8.

    CrossRef  Google Scholar 

  50. Wacker, Technical data sheet for SILRES® BS OH 100, SILRES, editor. 2014. p. 3.

    Google Scholar 

  51. Zornoza-Indart A, et al. Consolidation of a Tunisian bioclastic calcarenite: from conventional ethyl silicate products to nanostructured and nanoparticle based consolidants. Constr Build Mater. 2016;116:188–202.

    CrossRef  Google Scholar 

  52. Karatasios I, et al. Modification of water transport properties of porous building stones caused by polymerization of silicon-based consolidation products. In: Pure and Applied Chemistry. 2017.

    Google Scholar 

  53. Naidu S, Liu C, Scherer GW. Novel hydroxyapatite-based consolidant and the acceleration of hydrolysis of silicate-based consolidants. MRS Online Proceedings Library Archive. 2014;1656.

    Google Scholar 

  54. Naidu S, Liu C, Scherer GW. Hydroxyapatite-based consolidant and the acceleration of hydrolysis of silicate-based consolidants. J Cult Herit. 2015;16(1):94–101.

    CrossRef  Google Scholar 

  55. Sassoni E, et al. Consolidation of a porous limestone by means of a new treatment based on hydroxyapatite. In: Proceedings of 12th International Congress on deterioration and conservation of stone. New York City (USA); 2012.

    Google Scholar 

  56. Illescas JF, Mosquera MJ. Producing surfactant-synthesized nanomaterials in situ on a building substrate, without volatile organic compounds. ACS Appl Mater Interfaces. 2012;4(8):4259–69.

    CrossRef  Google Scholar 

  57. Zarzuela R, et al. CuO/SiO2 Nanocomposites: a multifunctional coating for application on building stone. Mater Des. 2017;114:364–72.

    CrossRef  Google Scholar 

  58. Pinho L, et al. A novel TiO2–SiO2 nanocomposite converts a very friable stone into a self-cleaning building material. Appl Surf Sci. 2013;275(0):389–96.

    CrossRef  Google Scholar 

  59. Han X, et al. Bridged siloxanes as novel potential hybrid consolidants for ancient Qin terracotta. Prog Org Coat. 2016;101:416–22.

    CrossRef  Google Scholar 

  60. Remzova M, et al. Effect of modified ethylsilicate consolidants on the mechanical properties of sandstone. Constr Build Mater. 2016;112:674–81.

    CrossRef  Google Scholar 

  61. Scherer GW. Theory of drying. J Am Ceram Soc. 1990;73(1):3–14.

    CrossRef  Google Scholar 

  62. Scherer GW, et al. Shrinkage of silica gels aged in TEOS. J Non-Cryst Solids. 1996;202(1):42–52.

    CrossRef  Google Scholar 

  63. Brinker CJ, Scherer GW. Sol-gel science: the physics and chemistry of sol-gel processing. Boston: Academic Press; 1990.

    Google Scholar 

  64. Miliani C, Velo-Simpson ML, Scherer GW. Particle-modified consolidants: a study on the effect of particles on sol–gel properties and consolidation effectiveness. J Cult Herit. 2007;8(1):1–6.

    CrossRef  Google Scholar 

  65. Liu R, et al. Preparation of three-component TEOS-based composites for stone conservation by sol–gel process. J Sol-Gel Sci Technol. 2013;68(1):19–30.

    CrossRef  Google Scholar 

  66. Salazar-Hernández C, et al. Conservation of building materials of historic monuments using a hybrid formulation. J Cult Herit. 2015;16(2):185–91.

    CrossRef  Google Scholar 

  67. Delgado Rodrigues J, Costa D. Occurrence and behaviour of interfaces in consolidated stones, in Structural studies of historical buildings IV. Volume 1: architectural studies, materials and analysis. Computational Mechanics Publications; 1995. p. 245–52.

    Google Scholar 

  68. Zárraga R, et al. Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J Cult Herit. 2010;11(2):138–44.

    CrossRef  Google Scholar 

  69. Mackenzie J, Huang Q, Iwamoto T. Mechanical properties of ormosils. J Sol-Gel Sci Technol. 1996;7(3):151–61.

    CrossRef  Google Scholar 

  70. Xu F, Li D. Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone protective materials. J Sol-Gel Sci Technol. 2013;65:212–9.

    CrossRef  Google Scholar 

  71. De Rosario I, et al. Effectiveness of a novel consolidant on granite: laboratory and in situ results. Constr Build Mater. 2015;76:140–9.

    CrossRef  Google Scholar 

  72. Illescas JF, Mosquera MJ. Surfactant-synthesized PDMS/silica nanomaterials improve robustness and stain resistance of carbonate stone. J Phys Chem C. 2011;115(30):14624–34.

    CrossRef  Google Scholar 

  73. Mosquera MJ, de los Santos DM, Rivas T. Surfactant-synthesized ormosils with application to stone restoration. Langmuir. 2010;26(9):6737–45.

    CrossRef  Google Scholar 

  74. Mosquera MJ, et al. New nanomaterials for protecting and consolidating stone. J Nano Res. 2009;8:1–12.

    CrossRef  Google Scholar 

  75. Pinho L, Mosquera MJ. Titania-silica nanocomposite photocatalysts with application in stone self-cleaning. J Phys Chem C. 2011;115(46):22851–62.

    CrossRef  Google Scholar 

  76. Pinho L, Mosquera MJ. Photocatalytic activity of TiO2–SiO2 nanocomposites applied to buildings: influence of particle size and loading. Appl Catal B Environ. 2013;134–135:205–21.

    CrossRef  Google Scholar 

  77. Kapridaki C, Maravelaki N-P. TiO2–SiO2–PDMS nanocomposites with self-cleaning properties for stone protection and consolidation, vol. 416. London: Geological Society Special Publication; 2015. p. 1.

    Google Scholar 

  78. Li D, et al. The effect of adding PDMS-OH and silica nanoparticles on sol–gel properties and effectiveness in stone protection. Appl Surf Sci. 2013;266:368–74.

    CrossRef  Google Scholar 

  79. Derluyn H, et al. Salt crystallization in hydrophobic porous materials. In: Hydrophobe V. Aedificatio Publishers; 2008.

    Google Scholar 

  80. Scherer GW, Wheeler GS. Silicate consolidants for stone. Key Eng Mater. 2009;391:1–25.

    CrossRef  Google Scholar 

  81. Sena da Fonseca B, et al. Polyethylene glycol oligomers as siloxane modificators in consolidation of carbonate stones. Pure Appl Chem. 2016;88(12):1117–28.

    CrossRef  Google Scholar 

  82. Kapridaki C, et al. Producing self-cleaning, transparent and hydrophobic SiO2-crystalline TiO2 nanocomposites at ambient conditions for stone protection and consolidation. In: Self-cleaning coatings. 2016. p. 105–41.

    Google Scholar 

  83. Verganelaki A, et al. Characterization of a newly synthesized calcium oxalate-silica nanocomposite and evaluation of its consolidation effect on limestones. In: Toniolo L, Boriani M, Guidi G, editors. Built heritage: monitoring conservation management. Cham: Springer; 2015. p. 391–402.

    Google Scholar 

  84. Prado AGS, Airoldi C. Different neutral surfactant template extraction routes for synthetic hexagonal mesoporous silicas. J Mater Chem. 2002;12(12):3823–6.

    CrossRef  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Fundação para a Ciência e Tecnologia (FCT) for the financial support, CQE—UID/QUI/00100/2013. The author B. Sena da Fonseca also acknowledges Fundação para a Ciência e Tecnologia (FCT) for the financial support through grant SFRH/BD/96226/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Sena da Fonseca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Sena da Fonseca, B., Ferreira Pinto, A., Piçarra, S., Montemor, M. (2018). Challenges of Alkoxysilane-Based Consolidants for Carbonate Stones: From Neat TEOS to Multipurpose Hybrid Nanomaterials. In: Hosseini, M., Karapanagiotis, I. (eds) Advanced Materials for the Conservation of Stone. Springer, Cham. https://doi.org/10.1007/978-3-319-72260-3_9

Download citation