Nanomaterials for the Consolidation of Stone Artifacts

  • David Chelazzi
  • Rachel Camerini
  • Rodorico Giorgi
  • Piero Baglioni


Stone artifacts constitute a large part of the global cultural heritage, and their preservation is thus central in order to bestow such patrimony upon future generations. Stone is constantly exposed to both physical and chemical degradation caused by a variety of factors (environmental, anthropogenic, biological, etc.), and as a result the mechanical properties of stone can be severely weakened. Powdering of surfaces, detachment, and flaking are all commonly observed on monuments, statues, and other works of art, requiring effective methods to consolidate the weakened layers. In the last decades, colloid and materials science have been providing effective solutions that allow the strengthening of stone layers while respecting the original physicochemical properties of the treated artifacts. This chapter reviews the main achievements in the field of nanomaterials applied to stone consolidation, discussing the principles that underpin the material development and application to artifacts. Consolidation systems comprise both inorganic (e.g., dispersions of alkaline earth hydroxide nanoparticles) and hybrid nanomaterials (e.g., organic–inorganic silica gels) to account for the preservation of carbonate and sandstone.


Calcium hydroxide nanoparticles Colloidal silica Nanocomposites Stone consolidation 


  1. 1.
    Baglioni P, Chelazzi D, Giorgi R. Nanotechnologies in the conservation of cultural heritage. New York: Springer; 2015.CrossRefGoogle Scholar
  2. 2.
    Everett DH. The thermodynamics of frost damage to porous solids. Trans Faraday Soc. 1961;57:1541–51.CrossRefGoogle Scholar
  3. 3.
    Fitzner B, Snethlage R. Relationship between the influence of salt crystallization and pore distribution. GP News Lett. 1982;3:13–24.Google Scholar
  4. 4.
    Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi N, Baglioni P. Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interf Sci. 2013;392:42–9.CrossRefGoogle Scholar
  5. 5.
    Favaro M, Mendichi R, Ossola F, Simon S, Tomasin P, Vigato PA. Evaluation of polymers for conservation treatments of outdoor exposed stone monuments. Part II: photo-oxidative and salt-induced weathering of acrylic–silicone mixtures. Polym Degrad Stabil. 2006;91:3083–96.CrossRefGoogle Scholar
  6. 6.
    Rodriguez-Navarro C, Elert K, Sevcik R. Amorphous and crystalline calcium carbonate phases during carbonation of nanolimes: implications in heritage conservation. CrystEngComm. 2016;18:6594–607.CrossRefGoogle Scholar
  7. 7.
    Bottari C, Crisci GM, Crupi V, Ignazzitto V, La Russa MF, Majolino D, Ricca M, Rossi B, Ruffolo SA, Teixeira J, Venuti V. SANS investigation of the salt-crystallization- and surface-treatment-induced degradation on limestones of historic-artistic interest. Appl Phys A Mater Sci Process. 2016;122:721–30.CrossRefGoogle Scholar
  8. 8.
    Carretti E, Chelazzi D, Rocchigiani G, Baglioni P, Poggi G, Dei L. Interactions between nanostructured calcium hydroxide and acrylate copolymers: implications in cultural heritage conservation. Langmuir. 2013;29:9881–90.CrossRefGoogle Scholar
  9. 9.
    Rodriguez-Navarro C, Hansen E, Ginell WS. Calcium hydroxide crystal evolution upon aging of lime putty. J Am Ceram Soc. 1998;81:3032–4.CrossRefGoogle Scholar
  10. 10.
    Rodriguez-Navarro C, Ruiz-Agudo E, Ortega-Huertas M, Hansen E. Nanostructure and irreversible colloidal behavior of Ca(OH)2: implications in cultural heritage conservation. Langmuir. 2005;21:10948–57.CrossRefGoogle Scholar
  11. 11.
    Giorgi R, Dei L, Baglioni P. A new method for consolidating wall paintings based on dispersions of lime in alcohol. Stud Conserv. 2000;45:154–61.Google Scholar
  12. 12.
    Ambrosi M, Dei L, Giorgi R, Neto C, Baglioni P. Stable dispersions of Ca(OH)2 in aliphatic alcohols: properties and application in cultural heritage conservation. Progr Colloid Polym Sci. 2001;118:68–72.CrossRefGoogle Scholar
  13. 13.
    Fratini E, Page MG, Giorgi R, Colfen H, Baglioni P, Deme B, Zemb T. Competitive surface adsorption of solvent molecules and compactness of agglomeration in calcium hydroxide nanoparticles. Langmuir. 2007;23:2330–8.CrossRefGoogle Scholar
  14. 14.
    Baglioni P, Dei L, Ferroni E, Giorgi R. Sospensioni Stabili di Idrossido di Calcio. 1996. Italian patent FI/96/A/000255, 31 Oct 1996.Google Scholar
  15. 15.
    Ambrosi M, Dei L, Giorgi R, Neto C, Baglioni P. Colloidal particles of Ca(OH)2: properties and applications to restoration of frescoes. Langmuir. 2001;17:4251–5.CrossRefGoogle Scholar
  16. 16.
    Croveri P, Dei L, Giorgi R, Salvadori B. Consolidation of Globigerina limestone (Malta) by means of inorganic treatments: preliminary results. In: Kwiatkowski D, Lofvendahl R, editors. Proceedings of the 10th international congress on deterioration and conservation of stone, vol. 1. Stockholm: ICOMOS Sweden; 2004. p. 463.Google Scholar
  17. 17.
    Salvadori B, Dei L. Synthesis of Ca(OH)2 nanoparticles from diols. Langmuir. 2001;17:2371–4.CrossRefGoogle Scholar
  18. 18.
    Dei L, Slavadori B. Nanotechnology in cultural heritage conservation: nanometric slaked lime saves architectonic and artistic surfaces from decay. J Cult Herit. 2006;7:110–5.CrossRefGoogle Scholar
  19. 19.
    Baglioni P, Dei L, Fratoni L, Lo Nostro P, Moroni M. Process for the preparation of nano-and micro-particles of group II and transition metals oxides and hydroxides, the nano-and micro-particles thus obtained and their use in the ceramic, textile and paper industries. 2005. Patent US20050175530 (A1) (Priority date: 2002-03-28); 2005.Google Scholar
  20. 20.
    Baglioni P, Carrasco Vargas R, Chelazzi D, Gonzalez MC, Desprat A, Giorgi R. The Maya site of Calakmul: in situ preservation of wall paintings and limestone using nanotechnology. In: Saunders D, Townsend JH, editors. Proceedings of the IIC congress 2006, Munich – the object in context: crossing conservation boundaries. London: James and James; 2006. p. 162.Google Scholar
  21. 21.
    Giorgi R, Ambrosi M, Toccafondi N, Baglioni P. Nanoparticles for cultural heritage conservation: calcium and barium hydroxide nanoparticles for wall painting consolidation. Chem Eur J. 2010;16:695–704.CrossRefGoogle Scholar
  22. 22.
    Poggi G, Toccafondi N, Chelazzi D, Canton P, Giorgi R, Baglioni P. Calcium hydroxide nanoparticles from solvothermal reaction for the deacidification of degraded waterlogged wood. J Colloid Interface Sci. 2016;473:1–8.CrossRefGoogle Scholar
  23. 23.
    Baglioni P, Chelazzi D, Giorgi R, Carretti E, Toccafondi N, Jaidar Y. Commercial Ca(OH)2 nanoparticles for the consolidation of immovable works of art. Appl Phys A Mater Sci Process. 2014;114:723–32.CrossRefGoogle Scholar
  24. 24.
    Lopez-Arce P, Gomez-Villalba LS, Pinho L, Fernandez-Valle ME, Alvarez de Buergo M, Fort R. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: effectiveness assessment with non-destructive techniques. Mater Charact. 2010;61:168–84.CrossRefGoogle Scholar
  25. 25.
    Daniele V, Taglieri G, Quaresima R. The nanolimes in cultural heritage conservation: characterization and analysis of the carbonation process. J Cult Herit. 2008;9:294–301.CrossRefGoogle Scholar
  26. 26.
    Daniele V, Taglieri G. Nanolime suspensions applied on natural lithotypes: the influence of concentration and residual water content on carbonation process and on treatment effectiveness. J Cult Herit. 2010;11:102–6.CrossRefGoogle Scholar
  27. 27.
    Borsoi G, Lubelli B, van Hess R, Veiga R, Silva AS. Evaluation of the effectiveness and compatibility of nanolime consolidants with improved properties. Constr Build Mater. 2017;142:385–94.CrossRefGoogle Scholar
  28. 28.
    Borsoi G, Lubelli B, van Hess R, Veiga R, Silva AS, Colla L, Fedele L, Tomasin P. Effect of solvent on nanolime transport within limestone: how to improve in-depth deposition. Physicochem Eng Aspects. 2016;497:171–81.CrossRefGoogle Scholar
  29. 29.
    Ziegenbalg G. Colloidal calcium hydroxide: a new material for consolidation and conservation of carbonatic stones. In: Lukaszewicz JW, Niemcewicz P, editors. Proceedings of the 11th international congress on deterioration and conservation of stone. Torun: Nicolaus Copernicus University; 2008. p. 1109.Google Scholar
  30. 30.
    D’Armada P, Hirst E. Nano-lime for consolidation of plaster and stone. J Architect Conserv. 2012;1:63–80.CrossRefGoogle Scholar
  31. 31.
    Dahene A, Herm C. Calcium hydroxide nanosols for the consolidation of porous building materials – results from EU-STONECORE. Herit Sci. 2013;1:11–20.CrossRefGoogle Scholar
  32. 32.
    Borsoi G, Lubelli B, van Hees R, Veiga R, Silva AS. Understanding the transport of nanolime consolidants within Maastricht limestone. J Cult Herit. 2016;18:242–9.CrossRefGoogle Scholar
  33. 33.
    Lanzon M, Madrid JA, Martinez-Arredondo A, Monaco S. Use of diluted Ca(OH)2 suspensions and their transformation into nanostructured CaCO3 coatings: A case study in strengthening heritage materials (stucco, adobe and stone). Appl Surf Sci. 2017;424(Part 1):20–27. In Press, Corrected Proof. Available online 1 March 2017. Scholar
  34. 34.
    Rodriguez-Navarro C, Suzuki A, Ruiz-Agudo E. Alcohol dispersions of calcium hydroxide nanoparticles for stone conservation. Langmuir. 2013;29:11457–70.CrossRefGoogle Scholar
  35. 35.
    Bermejo Sotillo MA, Rodriguez-Navarro C, Ruiz-Agudo E, Elert K. CO2-capturing binder, production method thereof based on the selection, purification and optimization of carbide lime, and agglomerates having and environmental activity. Eur. Pat. EP2500328; presented May 4th 2010, published September 19th 2012.Google Scholar
  36. 36.
    Rodriguez-Navarro C, Vettori I, Encarnacion R-A. Kinetics and mechanism of calcium hydroxide conversion into calcium alkoxides: implications in heritage conservation using nanolimes. Langmuir. 2016;32:5183–94.CrossRefGoogle Scholar
  37. 37.
    Licchelli M, Malagodi M, Weththimuni M, Zanchi C. Nanoparticles for conservation of bio-calcarenite stone. Appl Phys A Mater Sci Process. 2014;114:673–83.CrossRefGoogle Scholar
  38. 38.
    Ciliberto E, Condorelli GG, La Delfa S, Viscuso E. Nanoparticles of Sr(OH)2: synthesis in homogeneous phase at low temperature and application for cultural heritage artefacts. Appl Phys A Mater Sci Process. 2008;92:137–41.CrossRefGoogle Scholar
  39. 39.
    Hyde EDER, Seyfaee A, Neville F, Moreno-Atanasio R. Colloidal silica particle synthesis and future industrial manufacturing pathways: a review. Ind Eng Chem Res. 2016;55:8891–913.CrossRefGoogle Scholar
  40. 40.
    Facio DS, Luna M, Mosquera MJ. Facile preparation of mesoporous silica monoliths by an inverse micelle mechanism. Micropor Mesopor Mat. 2017;247:166–76.CrossRefGoogle Scholar
  41. 41.
    Mosquera MJ, de los Santos DM, Montes A, Valdez-Castro L. New nanomaterials for consolidating stone. Langmuir. 2008;24:2772–8.CrossRefGoogle Scholar
  42. 42.
    De Rosario I, Elhaddad F, Pan A, Benavides R, Rivas T, Mosquera MJ. Effectiveness of a novel consolidant on granite: laboratory and in situ results. Constr Build Mater. 2015;76:140–9.CrossRefGoogle Scholar
  43. 43.
    Mosquera MJ, Illescas JF, Facio DS. Product for protecting and restoring rocks and other construction materials. Spanish patent no. P201200152. 2012. Priority data: February 16, 2012.Google Scholar
  44. 44.
    Cericol, La Torre di Pisa: una pietra miliare nella storia del restauro, grazie alle tecnologie di Cericol. Colorobbia Consulting, Florence, Italy. 2017. Accessed Oct 2017.
  45. 45.
    Calia A, Masieri M, Bald IG, Mazzotta C. The evaluation of nanosilica performance for consolidation treatment of a highly porous calcarenite. In: C. University, editor. 12th International Congress on the Deterioration and Conservation of Stone. New York; 2012. p. 2–11.Google Scholar
  46. 46.
    Camaiti M, Dellantonio G, Pittertschatscher M. Restauro dello stemma affrescato del Cardinale Bernardo Cles press oil Castello del Buonconsiglio a Trento: nuove soluzioni per il consolidamento di intonaci dipinti staccati dal support murario. In: Ricerce A, editor. Atti del XXIV Convegno di studi Scienza e Beni Culturali su Restaurare i restauri – Metodi, Compatibilità, Cantieri, Marghera (Venezia); 2008. pp. 231–241.Google Scholar
  47. 47.
    Falchi L, Balliana E, Izzo FC, Agostinetto L, Zendri E. Distribution of nanosilica in Lecce stone. Science at Ca’ Foscari. 2013;1:49. Scholar
  48. 48.
    Grimaldi DM, Nora AP, Porter JH. The preservation of sandstone reliefs at the archaeological site of Tajin, Mexico, using colloidal silica. In: C. University, editor. 12th International congress on the deterioration and conservation of stone. New York; 2012. p. 12–22.Google Scholar
  49. 49.
    Zornoza-Indart A, Lopez-Arce P. Silica nanoparticles (SiO2): influence of relative humidity in stone consolidation. J Cult Herit. 2016;18:258–70.CrossRefGoogle Scholar
  50. 50.
    Jo B, Kim C, Tae G, Park J. Characteristics of cement mortar with nano-SiO2 particles. Constr Build Mater. 2007;21:1351–5.CrossRefGoogle Scholar
  51. 51.
    Bjornstrom J, Martinelli A, Matic A, Borjesson L, Panas I. Accelerating effects of colloidal nanosilica for beneficial calcium-silicate-hydrate formation in cement. Chem Phys Lett. 2004;392:242–8.CrossRefGoogle Scholar
  52. 52.
    Favaro M, Tomasin P, Ossola F, Vigato PA. A novel approach to consolidation of historical limestone: the calcium alkoxides. Appl Organomet Chem. 2008;22:698–704.Google Scholar
  53. 53.
    Ossola F, Tomasin P, De Zorzi C, El Habra N, Chiurato M, Favaro M. New calcium alkoxides for consolidation of carbonate rocks. Influence of precursors’ characteristics on morphology, crystalline phase and consolidation effects. New J Chem. 2012;36:2618–24.CrossRefGoogle Scholar
  54. 54.
    Natali I, Tomasin P, Becherini F, Bernardi A, Ciantelli C, Favaro M, Favoni O, Forrat Perez VJ, Oltenau ID, Romero Sanchez MD, Vivarelli A, Bonazza A. Innovative consolidating products for stone materials: field exposure tests as a valid approach for assessing durability. Herit Sci. 2015;3:6–19.CrossRefGoogle Scholar
  55. 55.
    Mosquera MJ, de los Santos DM, Rivas T. Surfactant-synthesized ormosils with application to stone restoration. Langmuir. 2010;26:6737–45.CrossRefGoogle Scholar
  56. 56.
    Illescas JF, Mosquera MJ. Producing surfactant-synthesized nanomaterials in situ on a building substrate, without volatile organic compounds. ACS Appl Mater Interfaces. 2012;4:4259–69.CrossRefGoogle Scholar
  57. 57.
    Illescas JF, Mosquera MJ. Surfactant-synthesized PDMS/silica nanomaterials improve robustness and stain resistance of carbonate stone. J Phys Chem C. 2011;115:14624–34.CrossRefGoogle Scholar
  58. 58.
    Zarraga R, Cervantes J, Salazar-Hernandez C, Wheeler G. Effect of the addition of hydroxyl-terminated polydimethylsiloxane to TEOS-based stone consolidants. J Cult Herit. 2010;11:138–44.CrossRefGoogle Scholar
  59. 59.
    Salazar-Hernandez C, Zarraga R, Alonso S, Sugita A, Calixto S, Cervantes J. Effect of solvent type on polycodensation of TEOS catalyzed by DBTL as used for stone consolidation. S Sol-Gel Sci Technol. 2009;49:301–10.CrossRefGoogle Scholar
  60. 60.
    Salazar-Hernandez C, Alquiza MJP, Salgado P, Cervantes J. TEOS-colloidal silica-PDMS-OH hybrid formulation used for stone consolidation. Appl Organometal Chem. 2010;24:481–8.Google Scholar
  61. 61.
    Son S, Won J, Kim JJ, Jang YD, Kang YS, Kim SD. Organic-inorganic hybrid compounds containing polyhedral oligomeric silsesquioxane for conservation of stone heritage. ACS Appl Mater Interf. 2009;2:393–401.CrossRefGoogle Scholar
  62. 62.
    Kim EK, Won J, Do JY, Kim SD, Kang YS. Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J Cult Herit. 2009;10:214–21.CrossRefGoogle Scholar
  63. 63.
    Liu Y, Liu J. Fabrication of TEOS/PDMS/F127 hybrid coating materials for conservation of historic stone sculptures. Appl Phys A Mater Sci Process. 2016;122:743–50.CrossRefGoogle Scholar
  64. 64.
    Delgado Rodrigues J, Grossi A. Indicators and ratings for the compatibility assessment of conservation actions. J Cult Herit. 2007;8:32–43.CrossRefGoogle Scholar
  65. 65.
    Miliani C, Velo-Simpson ML, Scherer GW. Particle-modified consolidants: a study on the effect of particles on sol-gel properties and consolidation effectiveness. J Cult Herit. 2007;8:1–6.CrossRefGoogle Scholar
  66. 66.
    Ksinopoulou E, Bakolas A, Moropoulou A. Modifying Si-based consolidants through the addition of colloidal nano-particles. Appl Phys A Mater Sci Process. 2016;122:267–77.CrossRefGoogle Scholar
  67. 67.
    Verganelaki A, Kilikoglou V, Karatasios I, Maravelaki-Kalaitzaki P. A biomimetic approach to strengthen and protect construction materials with a novel calcium-oxalate-silica nanocomposite. Constr Build Mater. 2014;62:8–17.CrossRefGoogle Scholar
  68. 68.
    Cardiano P, Ponerio RC, Sergi S, Lo Schiavo S, Piraino P. Epoxy-silica polymers as stone conservation materials. Polymer. 2005;46:1857–64.CrossRefGoogle Scholar
  69. 69.
    Tulliani JM, Formia A, Sangermano M. Organic-inorganic material or the consolidation of plaster. J Cult Herit. 2011;12:364–71.CrossRefGoogle Scholar
  70. 70.
    D’Arienzo L, Scarfato P, Incarnato L. New polymeric nanocomposites for improving the protective and consolidating efficiency of tuff stone. J Cult Herit. 2008;9:253–60.CrossRefGoogle Scholar
  71. 71.
    Martınez-Camacho F, Vazquez-Negrete J, Lima E, Lara VH, Bosch P. Texture of nopal treated adobe: restoring Nuestra senora del Pilar mission. J Archaeol Sci. 2008;35:1125–33.CrossRefGoogle Scholar
  72. 72.
    Warren J. Conservation of earth structures. Series in Conservation and Museology. Oxford: Elsevier Butterworth-Heinemann; 1999.Google Scholar
  73. 73.
    Kita Y. The functions of vegetable mucilage in lime and earth mortars – a review, 3rd Historic Mortars Conference, Glasgow; 2013.Google Scholar
  74. 74.
    Elert K, Pardo ES, Rodriguez-Navarro C. Alkaline activation as an alternative method for the consolidation of earthen architecture. J Cult Herit. 2015;16:461–9.CrossRefGoogle Scholar
  75. 75.
    Oti JE, Kinuthia JM, Bai J. Compressive strength and microstructural analysis of unfired clay masonry bricks. Eng Geol. 2009;109:230–40.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry Ugo Schiff and CSGIUniversity of Florence, Via della Lastruccia 3FlorenceItaly

Personalised recommendations