Skip to main content

Solitary Waves on Graphene Superlattices

Part of the Understanding Complex Systems book series (UCS)

Abstract

This chapter reviews the basic theoretical aspects of the propagation of solitary electromagnetic waves in graphene superlattices, a one atom thick sheet of graphene deposited on a superlattice, made by several periodically alternating layers of SiO\(_2\) and h-BN. The electronic band structure of graphene and the techniques of band gap engineering are briefly presented. The analysis of the electronic properties of graphene superlattices by using both the transfer matrix method and the Kronig–Penny model are summarized. The nonlinear wave equation for the vector potential of the electromagnetic wave field is derived. This graphene superlattice equation (GSLeq) generalizes the sine-Gordon equation (sGeq). Hence, it also has kink and antikink solutions propagating at a constant speed. There is no closed-form expression for their shape. A straightforward asymptotic method is applied in order to analytically approximate its shape. The interactions of kinks and antikinks is studied by using a numerical method, the Strauss–Vázquez, which is a conservative, finite difference scheme. This numerical method is second-order accurate in both space and time, and nonlinearly stable, exactly conserving a discrete energy. Extensive numerical results for the kink–antikink interactions are presented as a function of a asymptotic parameter. For small values of this parameter, the interaction is apparently elastic, without noticeable radiation, being very similar to that expected for the sGeq. For large values of the asymptotic parameter, the inelasticity of the interaction results in the emission of wavepackets of radiation. In summary, the whole set of results suggest that the GSLeq behaves as a nearly integrable perturbation of the sGeq. Consequently, graphene superlattices can be used to study nonlinear wave phenomena with electromagnetic waves in the THz scale.

Keywords

  • Topological solitons
  • Kinks
  • Sine–Gordon equation
  • Nonlinear Klein–Gordon equation
  • Graphene superlattices
  • Plasmonics
  • THz electromagnetic waves

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-72218-4_4
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-72218-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1

Copyright (2009) by the American Physical Society

Fig. 2

Reproduced with permission from [6]. Copyright (2011) by the American Physical Society

Fig. 3

Reproduced with permission from [15]. Copyright (2012) by the American Physical Society

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Barbier, M., Vasilopoulos, P., Peeters, F.M.: Extra dirac points in the energy spectrum for superlattices on single-layer graphene. Phys. Rev. B 81, 075438 (2010)

    CrossRef  ADS  MATH  Google Scholar 

  2. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: Influence of the constant electric field on the mutual rectification of the electromagnetic waves in graphene superlattice. Rev. Mod. Phys. 81, 109–162 (2009)

    CrossRef  ADS  Google Scholar 

  3. Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)

    CrossRef  ADS  Google Scholar 

  4. Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)

    Google Scholar 

  5. Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., Van den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007)

    CrossRef  ADS  Google Scholar 

  6. Goerbig, M.O.: Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011)

    CrossRef  ADS  Google Scholar 

  7. Jørgensen, J.H., Čabo, A.G., Balog, R., Kyhl, L., Groves, M.N., Cassidy, A.M., Bruix, A., Bianchi, M., Dendzik, M., Arman, M.A., Lammich, L., Pascual, J.I., Knudsen, J., Hammer, B., Hofmann, P., Hornekaer, L.: Symmetry-driven band gap engineering in hydrogen functionalized graphene. ACS Nano 10, 10798–10807 (2016)

    CrossRef  Google Scholar 

  8. Jung, J., DaSilva, A.M., MacDonald, A.H., Adam, S.: Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun. 6, 6308 (2015)

    CrossRef  ADS  Google Scholar 

  9. Kryuchkov, S.V., Kukhar’, E.I.: Influence of the constant electric field on the mutual rectification of the electromagnetic waves in graphene superlattice. Physica E 46, 25–29 (2012)

    CrossRef  ADS  Google Scholar 

  10. Kryuchkov, S.V., Kukhar’, E.I.: Mutual rectification of cnoidal and sinusoidal electromagnetic waves with orthogonal polarization planes in a graphene-based superlattice. Opt. Spectrosc. 112, 914–919 (2012)

    CrossRef  ADS  Google Scholar 

  11. Kryuchkov, S.V., Kukhar’, E.I.: The solitary electromagnetic waves in the graphene superlattice. Physica B 408, 188–192 (2012)

    CrossRef  ADS  Google Scholar 

  12. Kryuchkov, S.V., Kukhar’, E.I.: Alternating current-driven graphene superlattices: kinks, dissipative solitons, dynamic chaotization. Chaos 25, 073116 (2015)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  13. Kryuchkov, S.V., Kukhar’, E.I., Yakovenko, V.A.: Effect of the mutual rectification of two electromagnetic waves with perpendicular polarization planes in a superlattice based on graphene. Bull. Russ. Acad. Sci. Phys. 74, 1679–1681 (2010)

    CrossRef  MATH  Google Scholar 

  14. Lima, J.R.F., Moraes, F.: Indirect band gap in graphene from modulation of the fermi velocity. Solid State Commun. 201, 82–87 (2014)

    CrossRef  ADS  Google Scholar 

  15. Maksimova, G.M., Azarova, E.S., Telezhnikov, A.V., Burdov, V.A.: Graphene superlattice with periodically modulated dirac gap. Phys. Rev. B 86, 205422 (2012)

    CrossRef  ADS  Google Scholar 

  16. Mikhailov, S.A.: Non-linear electromagnetic response of graphene. Eur. Phys. Lett. 79, 27002 (2007)

    CrossRef  ADS  Google Scholar 

  17. Mikhailov, S.A., Ziegler, K.: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys.-Condens. Matter 20, 384204 (2008)

    CrossRef  ADS  Google Scholar 

  18. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    CrossRef  ADS  Google Scholar 

  19. Pascual, P.J., Vázquez, L.: Sine–Gordon solitons underweak stochastic perturbations. Phys. Rev. B 32, 8305 (1985)

    CrossRef  ADS  Google Scholar 

  20. Ratnikov, P.V.: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. JETP Lett. 90, 469–474 (2009)

    CrossRef  ADS  Google Scholar 

  21. Ratnikov, P.V.: Superlattice based on graphene on a strip substrate. JETP Lett. 90, 469–474 (2009)

    CrossRef  ADS  Google Scholar 

  22. Ratnikov, P.V., Silin, A.P.: Novel type of superlattices based on gapless graphene with the alternating fermi velocity. JETP Lett. 100, 311–318 (2014)

    CrossRef  ADS  Google Scholar 

  23. Rus, F., Villatoro, F.R.: Self-similar radiation from numerical rosenauhyman compactons. J. Comput. Phys. 227, 440–454 (2007)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  24. Strauss, W., Vázquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28, 271–278 (1978)

    CrossRef  ADS  MathSciNet  MATH  Google Scholar 

  25. Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622–634 (1947)

    CrossRef  ADS  MATH  Google Scholar 

  26. Wallbank, J.R., Mucha-Kruczyn̂ski, M., Chen, X., Fal’ko, V.I.: Moiré superlattice effects in graphene/boron-nitride van der Waals heterostructures. Ann. Phys.-Berl. 527, 359–376 (2015)

    CrossRef  ADS  Google Scholar 

  27. Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., Jacquod, P., LeRoy, B.J.: Emergence of superlattice dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012)

    CrossRef  Google Scholar 

  28. Zav’ialov, D.V., Konchenkov, V.I., Kruchkov, S.V.: Transverse current rectification in a graphene-based superlattice. Semiconductors 46, 109–116 (2012)

    CrossRef  ADS  Google Scholar 

  29. Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770–775 (2007)

    CrossRef  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from project TIN2014-56494-C4-1-P from Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia del Ministerio de Ciencia e Innovación (MICINN) of Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisca Martin-Vergara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Martin-Vergara, F., Rus, F., Villatoro, F.R. (2018). Solitary Waves on Graphene Superlattices. In: Archilla, J., Palmero, F., Lemos, M., Sánchez-Rey, B., Casado-Pascual, J. (eds) Nonlinear Systems, Vol. 2. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-72218-4_4

Download citation