Abstract
This chapter reviews the basic theoretical aspects of the propagation of solitary electromagnetic waves in graphene superlattices, a one atom thick sheet of graphene deposited on a superlattice, made by several periodically alternating layers of SiO\(_2\) and h-BN. The electronic band structure of graphene and the techniques of band gap engineering are briefly presented. The analysis of the electronic properties of graphene superlattices by using both the transfer matrix method and the Kronig–Penny model are summarized. The nonlinear wave equation for the vector potential of the electromagnetic wave field is derived. This graphene superlattice equation (GSLeq) generalizes the sine-Gordon equation (sGeq). Hence, it also has kink and antikink solutions propagating at a constant speed. There is no closed-form expression for their shape. A straightforward asymptotic method is applied in order to analytically approximate its shape. The interactions of kinks and antikinks is studied by using a numerical method, the Strauss–Vázquez, which is a conservative, finite difference scheme. This numerical method is second-order accurate in both space and time, and nonlinearly stable, exactly conserving a discrete energy. Extensive numerical results for the kink–antikink interactions are presented as a function of a asymptotic parameter. For small values of this parameter, the interaction is apparently elastic, without noticeable radiation, being very similar to that expected for the sGeq. For large values of the asymptotic parameter, the inelasticity of the interaction results in the emission of wavepackets of radiation. In summary, the whole set of results suggest that the GSLeq behaves as a nearly integrable perturbation of the sGeq. Consequently, graphene superlattices can be used to study nonlinear wave phenomena with electromagnetic waves in the THz scale.
Keywords
- Topological solitons
- Kinks
- Sine–Gordon equation
- Nonlinear Klein–Gordon equation
- Graphene superlattices
- Plasmonics
- THz electromagnetic waves
This is a preview of subscription content, access via your institution.
Buying options

Copyright (2009) by the American Physical Society

Reproduced with permission from [6]. Copyright (2011) by the American Physical Society

Reproduced with permission from [15]. Copyright (2012) by the American Physical Society







References
Barbier, M., Vasilopoulos, P., Peeters, F.M.: Extra dirac points in the energy spectrum for superlattices on single-layer graphene. Phys. Rev. B 81, 075438 (2010)
Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: Influence of the constant electric field on the mutual rectification of the electromagnetic waves in graphene superlattice. Rev. Mod. Phys. 81, 109–162 (2009)
Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)
Geim, A.K., MacDonald, A.H.: Graphene: exploring carbon flatland. Phys. Today 60, 35–41 (2007)
Giovannetti, G., Khomyakov, P.A., Brocks, G., Kelly, P.J., Van den Brink, J.: Substrate-induced band gap in graphene on hexagonal boron nitride: ab initio density functional calculations. Phys. Rev. B 76, 073103 (2007)
Goerbig, M.O.: Electronic properties of graphene in a strong magnetic field. Rev. Mod. Phys. 83, 1193–1243 (2011)
Jørgensen, J.H., Čabo, A.G., Balog, R., Kyhl, L., Groves, M.N., Cassidy, A.M., Bruix, A., Bianchi, M., Dendzik, M., Arman, M.A., Lammich, L., Pascual, J.I., Knudsen, J., Hammer, B., Hofmann, P., Hornekaer, L.: Symmetry-driven band gap engineering in hydrogen functionalized graphene. ACS Nano 10, 10798–10807 (2016)
Jung, J., DaSilva, A.M., MacDonald, A.H., Adam, S.: Origin of band gaps in graphene on hexagonal boron nitride. Nat. Commun. 6, 6308 (2015)
Kryuchkov, S.V., Kukhar’, E.I.: Influence of the constant electric field on the mutual rectification of the electromagnetic waves in graphene superlattice. Physica E 46, 25–29 (2012)
Kryuchkov, S.V., Kukhar’, E.I.: Mutual rectification of cnoidal and sinusoidal electromagnetic waves with orthogonal polarization planes in a graphene-based superlattice. Opt. Spectrosc. 112, 914–919 (2012)
Kryuchkov, S.V., Kukhar’, E.I.: The solitary electromagnetic waves in the graphene superlattice. Physica B 408, 188–192 (2012)
Kryuchkov, S.V., Kukhar’, E.I.: Alternating current-driven graphene superlattices: kinks, dissipative solitons, dynamic chaotization. Chaos 25, 073116 (2015)
Kryuchkov, S.V., Kukhar’, E.I., Yakovenko, V.A.: Effect of the mutual rectification of two electromagnetic waves with perpendicular polarization planes in a superlattice based on graphene. Bull. Russ. Acad. Sci. Phys. 74, 1679–1681 (2010)
Lima, J.R.F., Moraes, F.: Indirect band gap in graphene from modulation of the fermi velocity. Solid State Commun. 201, 82–87 (2014)
Maksimova, G.M., Azarova, E.S., Telezhnikov, A.V., Burdov, V.A.: Graphene superlattice with periodically modulated dirac gap. Phys. Rev. B 86, 205422 (2012)
Mikhailov, S.A.: Non-linear electromagnetic response of graphene. Eur. Phys. Lett. 79, 27002 (2007)
Mikhailov, S.A., Ziegler, K.: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. J. Phys.-Condens. Matter 20, 384204 (2008)
Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)
Pascual, P.J., Vázquez, L.: Sine–Gordon solitons underweak stochastic perturbations. Phys. Rev. B 32, 8305 (1985)
Ratnikov, P.V.: Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. JETP Lett. 90, 469–474 (2009)
Ratnikov, P.V.: Superlattice based on graphene on a strip substrate. JETP Lett. 90, 469–474 (2009)
Ratnikov, P.V., Silin, A.P.: Novel type of superlattices based on gapless graphene with the alternating fermi velocity. JETP Lett. 100, 311–318 (2014)
Rus, F., Villatoro, F.R.: Self-similar radiation from numerical rosenauhyman compactons. J. Comput. Phys. 227, 440–454 (2007)
Strauss, W., Vázquez, L.: Numerical solution of a nonlinear Klein–Gordon equation. J. Comput. Phys. 28, 271–278 (1978)
Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622–634 (1947)
Wallbank, J.R., Mucha-Kruczyn̂ski, M., Chen, X., Fal’ko, V.I.: Moiré superlattice effects in graphene/boron-nitride van der Waals heterostructures. Ann. Phys.-Berl. 527, 359–376 (2015)
Yankowitz, M., Xue, J., Cormode, D., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., Jacquod, P., LeRoy, B.J.: Emergence of superlattice dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012)
Zav’ialov, D.V., Konchenkov, V.I., Kruchkov, S.V.: Transverse current rectification in a graphene-based superlattice. Semiconductors 46, 109–116 (2012)
Zhou, S.Y., Gweon, G.H., Fedorov, A.V., First, P.N., de Heer, W.A., Lee, D.H., Guinea, F., Castro Neto, A.H., Lanzara, A.: Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 6, 770–775 (2007)
Acknowledgements
The authors acknowledge financial support from project TIN2014-56494-C4-1-P from Programa Estatal de Fomento de la Investigación Científica y Técnica de Excelencia del Ministerio de Ciencia e Innovación (MICINN) of Spain.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Martin-Vergara, F., Rus, F., Villatoro, F.R. (2018). Solitary Waves on Graphene Superlattices. In: Archilla, J., Palmero, F., Lemos, M., Sánchez-Rey, B., Casado-Pascual, J. (eds) Nonlinear Systems, Vol. 2. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-72218-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-72218-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-72217-7
Online ISBN: 978-3-319-72218-4
eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)