Skip to main content

Kinks in a Lattice of Repelling Particles

Experimental Study with a Chain of Coupled Pendulums

  • Chapter
  • First Online:
Nonlinear Systems, Vol. 2

Abstract

A lattice of repelling particles is a good model for studying certain properties that take place at atomic scale in Solid State Physics. In this chapter we study theoretically and experimentally the generation and propagation of kinks in such kind of systems. We propose a simple experimental setup consisting in an array of pendulums, having magnets at the extreme, i.e., that form a set of coupled magnetic dipoles. We excite pulses at one boundary of the system and demonstrate the existence of transient-kinks, whose dynamics are in very good agreement with the theoretical predictions given by the \(\alpha \)-FPU equation. The peculiarities of the experimental system allows to study a broad range of phenomena. On one hand, by the effect of the finite size of the magnets, the model captures the dynamics of different inverse power law inter-particle interactions, ranging from the monopole limit to the dipole interaction. On the other hand, we propose the use of an external substrate potential at the bottom of the lattice that mimics the substrate potential of a crystal. Thus, the results obtained in the experimental setup can be extrapolated to other systems described by this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archilla, J.F.R., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M. (eds.): Quodons In Mica: Nonlinear Localized Travelling Excitations In Crystals, Springer series in materials science, vol. 221. Springer International Publishing, Cham (2015)

    Google Scholar 

  2. Archilla, J.F.R., Kosevich, YuA, Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M.: Moving excitations in cation lattices. Ukr. J. Phys. 58(7), 646–656 (2013)

    Article  Google Scholar 

  3. Archilla, J.F.R., Kosevich, YuA, Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M.: Supersonic kinks in Coulomb lattices. In: Carretero-González, R., Cuevas, J., Frantzeskakis, D., Karachalios, N., Kevrekidis, P.G., Palmero, F. (eds.) Localized Excitations in Nonlinear Complex Systems, pp. 317–331. Springer International Publishing, Cham (2014)

    Chapter  Google Scholar 

  4. Archilla, J.F.R., Kosevich, YuA, Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M.: Ultradiscrete kinks with supersonic speed in a layered crystal with realistic potentials. Phys. Rev. E 91(2), 022912 (2015)

    Article  ADS  Google Scholar 

  5. Archilla, J.F.R., Kosevich, Yu.A., Jiménez, N., Sánchez-Morcillo, V.J., García-Raffi, L.M.: A supersonic crowdion in mica. In: J.F.R. Archilla, N. Jiménez, V.J. Sánchez-Morcillo, L.M. García-Raffi (eds.) Quodons In Mica: Nonlinear Localized Travelling Excitations In Crystals, Springer Series in Materials Science, vol. 221, pp. 69–96 (2015)

    Google Scholar 

  6. Archilla, J.F.R., Russell, F.M.: On the charge of quodons. Lett. Mater. 6, 3–8 (2016)

    Article  Google Scholar 

  7. Camacho, J.M., Sosa, V.: Alternative method to calculate the magnetic field of permanent magnets with azimuthal symmetry. Rev. Mex. Fis. 59, 8–17 (2013)

    MathSciNet  Google Scholar 

  8. Deshpande, V.V., Bockrath, M.: The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 4(4), 314–318 (2008)

    Article  Google Scholar 

  9. Griffiths, D.J.: Introduction to Electrodynamics, 3 edn. Prentice Hall (2007)

    Google Scholar 

  10. Homann, A., Melzer, A., Peters, S., Piel, A.: Determination of the dust screening length by laser-excited lattice waves. Phys. Rev. E 56(6), 7138–7141 (1997)

    Article  ADS  Google Scholar 

  11. Jackson, J.D.: Classical Electrodynamics, 3 edn., p. 190 WileyJohn Wiley and Sons (1999)

    Google Scholar 

  12. Jiménez, N.: Nonlinear acoustic waves in complex media. Ph.D. thesis, Universitat Politècnica de València, València, Spain (2015). https://doi.org/10.4995/Thesis/10251/53237

  13. Kittel, C.: Solid State Physics, 8 edn. John Wiley and Sons (2004)

    Google Scholar 

  14. Kosevich, YuA: Nonlinear sinusoidal waves and their superposition in anharmonic lattices. Phys. Rev. Lett. 71(13), 2058–2061 (1993)

    Article  ADS  Google Scholar 

  15. Kosevich, YuA, Khomeriki, R., Ruffo, S.: Supersonic discrete kink-solitons and sinusoidal patterns with magic wave number in anharmonic lattices. Europhys. Lett. 66(1), 21–27 (2004)

    Article  ADS  Google Scholar 

  16. Matveev, K.A., Andreev, A.V., Pustilnik, M.: Equilibration of a one-dimensional Wigner crystal. Phys. Rev. Lett. 105(4), 046401 (2010)

    Article  ADS  Google Scholar 

  17. Mehrem, A.: Nonlinear acoustics in periodic media :from fundamental effects to applications. Ph.D. thesis, Universitat Politècnica de València, València, Spain (2017). https://doi.org/10.4995/Thesis/10251/80289

  18. Molerón, M., Leonard, A., Daraio, C.: Solitary waves in a chain of repelling magnets. J. Appl. Phys. 115(18), 184901 (2014)

    Article  ADS  Google Scholar 

  19. Nosenko, V., Avinash, K., Goree, J., Liu, B.: Nonlinear interaction of compressional waves in a 2D dusty plasma crystal. Phys. Rev. Lett. 92(8), 085001 (2004)

    Article  ADS  Google Scholar 

  20. Peyrard, M., Pnevmatikos, S., Flytzanis, N.: Discreteness effects on non-topological kink soliton dynamics in nonlinear lattices. Phys. D 19(2), 268–281 (1986)

    Article  Google Scholar 

  21. Pnevmatikos, St, Flytzanis, N., Remoissenet, M.: Soliton dynamics of nonlinear diatomic lattices. Phys. Rev. B 33(4), 2308–2321 (1986)

    Article  ADS  Google Scholar 

  22. Poggi, P., Ruffo, S.: Exact solutions in the FPU oscillator chain. Phys. D 103(1–4), 251–272 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Porras, D., Marquardt, F., Von Delft, J., Cirac, J.I.: Mesoscopic spin-boson models of trapped ions. Phys. Rev. A 78(1), 010101 (2008)

    Article  ADS  Google Scholar 

  24. Raizen, M.G., Gilligan, J.M., Bergquist, J.C., Itano, W.M., Wineland, D.J.: Ionic crystals in a linear Paul trap. Phys. Rev. A 45(9), 6493 (1992)

    Article  ADS  Google Scholar 

  25. Remoissenet, M.: Waves called solitons: concepts and experiments. Springer Science & Business Media (2013)

    Google Scholar 

  26. Russell, F.M., Eilbeck, J.C.: Evidence for moving breathers in a layered crystal insulator at 300 K. Europhys. Lett. 78(1), 10004 (2007)

    Article  ADS  Google Scholar 

  27. Russell, F.M., Zolotaryuk, Y.O., Eilbeck, J.C., Dauxois, T.: Moving breathers in a chain of magnetic pendulums. Phys. Rev. B 55(10), 6304–6308 (1997)

    Article  ADS  Google Scholar 

  28. Savin, A.V., Zolotaryuk, Y.O., Eilbeck, J.C.: Moving kinks and nanopterons in the nonlinear Klein-Gordon lattice. Phys. D 138(3), 267–281 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

All authors acknowledge grant FIS2015-65998-C2-2-P from Ministerio de Economía y Competitividad (MINECO), Spain, which funded this research. AM gratefully acknowledge to Generalitat Valenciana (Santiago Grisolia program). LJSC gratefully acknowledge the support of PAID-01-14 at Universitat Politècnica de València. JFRA also aknowledges the (2017/FQM-280) grant from Junta de Andalucía.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis M. García-Raffi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehrem, A. et al. (2018). Kinks in a Lattice of Repelling Particles. In: Archilla, J., Palmero, F., Lemos, M., Sánchez-Rey, B., Casado-Pascual, J. (eds) Nonlinear Systems, Vol. 2. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-72218-4_11

Download citation

Publish with us

Policies and ethics