Modeling of Memristive Devices for Neuromorphic Application

Chapter
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 29)

Abstract

This chapter presents the physical mechanism analysis and the compact behavioral modeling of the titanium oxide, ferroelectric tunnel junctions, and phase change materials memristive devices. The memristive devices mathematical theoretical model’s derivation and physics-based model structure representations along with their resistive switching mechanisms are analyzed, implemented and validated. The accuracy of the implemented Verilog-A models of the considered memristive deivces are assessed in a synaptic transmission through spike-timing-dependent plasticity. Moreover, the key properties and performances of these three memristors technologies are discussed in order to classify them and study their adequacy for their adoption to artificially imitate synaptic functionality in neuromorphic applications.

References

  1. 1.
    International Technology Roadmap for Semiconductors (ITRS). (2015). [Online]. Available: https://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs.
  2. 2.
    Mead, C. (1990, October). Neuromorphic electronic systems. Proceedings of the IEEE, 78(10), 1629–1636.Google Scholar
  3. 3.
    Poon, C. S., & Zhou, K. (2011, September). Neuromorphic silicon neurons and large-scale neural networks: challenges and opportunities. Frontiers in `Neuroscience, 5.Google Scholar
  4. 4.
    Indiveri, G. et al. (2001, May). Neuromorphic silicon neuron circuits. Frontiers in Neuroscience, 5.Google Scholar
  5. 5.
    Rachmuth, G., Shouval, H. Z., Bear, M. F., & Poon, C. S. (2011, December). PNAS Plus: A biophysically-based neuromorphic model of spike rate-and timing-dependent plasticity. Proceedings of the National Academy of Sciences, 108, E1266–E1274.Google Scholar
  6. 6.
    Shouval, H. Z., Bear, M. F., & Cooper, L. N. (2002, August). A unified model of NMDA receptor-dependent bidirectional synaptic plasticity. Proceedings of the National Academy of Sciences, 99(16), 10831–10836.Google Scholar
  7. 7.
    Chua, L. (1971, September). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.Google Scholar
  8. 8.
    Chua, L. O., & Kang, S. M. (1976, February). Memristive devices and systems. Proceedings of the IEEE, 64(2), 209–223.Google Scholar
  9. 9.
    Pickett, M. D. et al. (2009, October) Switching dynamics in titanium dioxide memristive devices. J. Appl. PhysJournal of Applied Physics, 106, 074508–074508.Google Scholar
  10. 10.
    Suri, M. et al. (2012, September) Physical aspects of low power synapses based on phase change memory devices. Journal of Applied Physics, 112(5), 054904.Google Scholar
  11. 11.
    Yang, J. J., Strukov, D. B., & Stewart, D. R. (2013, January). Memristive devices for computing. Nature Nanotechnology, 8(1), 13-24.Google Scholar
  12. 12.
    Chanthbouala, A et al. (2012, October). A ferroelectric memristor. Nature Materials, 11(10), 860–864.Google Scholar
  13. 13.
    Chua, L. O., Desoer, C. A., & Kuh, E. S. (1987). Linear and nonlinear circuits. New York: McGraw-Hill College.Google Scholar
  14. 14.
    Baek, I. G., et al. (2004). Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses, In. IEDM Technical Digest IEEE International Electron Devices Meeting, 2004, 587–590.Google Scholar
  15. 15.
    Kim, K. M., Jeong, D. S., & Hwang, C. S. (2011, June). Nanofilamentary resistive switching in binary oxide system; a review on the present statusand outlook. Nanotechnology, 22, 254002.Google Scholar
  16. 16.
    Wright, C. D., Hosseini, P., & Diosdado, J. A. V. (2013, June). Beyond von‐Neumann Computing with Nanoscale Phase‐Change Memory Devices. Advanced Functional Materials, 23(18), 2248-2254.Google Scholar
  17. 17.
    Akinaga, H., Shima, H., Takano, F., Inoue, I. H., & Takagi, H. (2007, July). Resistive switching effect in metal/insulator/metal heterostructures and its application for non‐volatile memory. IEEJ Transactions on Electrical and Electronic Engineering, 2(4), 453–457.Google Scholar
  18. 18.
    Chalkiadaki, M. A., Valla, C., Poullet, F., & Bucher, M. (2013, November). Why‐and how‐to integrate Verilog‐A compact models in SPICE simulators. International Journal of Circuit Theory and Applications, 41(11), 1203-1211.Google Scholar
  19. 19.
    Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008, May). The missing memristor found. Nature, 453, 80–83.Google Scholar
  20. 20.
    Prodromakis, T., Peh, B. P., Papavassiliou, C., & Toumazou, C. (2011, September). A versatile memristor model with nonlinear dopant kinetics. IEEE Transactions on Electron Devices, 58(9), 3099–3105.Google Scholar
  21. 21.
    Waser, R., & Aono, M. (2007). Nanoionics-based resistive switching memories. Nature Materials, 6, 833–840.Google Scholar
  22. 22.
    Jameson, J. R. et al.(2011, August). One-dimensional model of the programming kinetics of conductive-bridge memory cells, Applied Physics Letters, 99(6), 063506.Google Scholar
  23. 23.
    Gao, B., Kang, J., Liu, L., Liu, X., & Yu, B. (2011, June). A physical model for bipolar oxide-based resistive switching memory based on ion-transport-recombination effect. Applied Physics Letters, 98, 232108.Google Scholar
  24. 24.
    Catalan, G., Scott, J. F., Schilling, A., & Gregg, J. M. (2007). Wall thickness dependence of the scaling law for ferroic stripe domains. Journal of Physics: Condensed Matter, 19(2), 022201.Google Scholar
  25. 25.
    Catalan, G. et al. (2008, January). Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO 3. Physical review letters, 100(2), 027602.Google Scholar
  26. 26.
    Bibes, M. (2012, May). Nanoferronics is a winning combination. Nature Materials, 11(5), 354–357.Google Scholar
  27. 27.
    Ishibashi, Y., & Takagi, Y. (1971, August). Note on ferroelectric domain switching. Journal of the Physical Society of Japan, 31(2), 506–510.Google Scholar
  28. 28.
    Hashimoto, S., Orihara, H., & Ishibashi, Y. (1994, April). Study on DE hysteresis loop of TGS based on the Avrami-type model. Journal of the Physical Society of Japan, 63(4), 1601–1610.Google Scholar
  29. 29.
    Tagantsev, A. K., Stolichnov, I., Setter, N., Cross, J. S., & Tsukada, M. (2002, December). Non-Kolmogorov-Avrami switching kinetics in ferroelectric thin films. Physical Review B, 66(21), 214109.Google Scholar
  30. 30.
    Brinkman, W. F., Dynes, R. C., & Rowell, J. M. (1970, April). Tunneling conductance of asymmetrical barriers. Journal of Applied Physics, 41(5), 1915–1921.Google Scholar
  31. 31.
    Simmons, J. G. (1963, September). Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. Journal of Applied Physics, 34(9), 2581–2590.Google Scholar
  32. 32.
    Abdalla, H., & Pickett, M. D. (2011). SPICE modeling of memristors, In. IEEE International Symposium of Circuits and Systems (ISCAS), 2011, 1832–1835.Google Scholar
  33. 33.
    Peng, C., Cheng, L., & Mansuripur, M. (1997, November). Experimental and theoretical investigations of laser-induced crystallization and amorphization in phase-change optical recording media. Journal of Applied Physics, 82(9), 4183–4191.Google Scholar
  34. 34.
    Drachman, D. A. (2005, June). Do we have brain to spare?. Neurology, 64(12), 2004–2005.Google Scholar
  35. 35.
    Fornito, A., Zalesky, A., & Breakspear, M. (2015, March). The connectomics of brain disorders. Nature Reviews Neuroscience, 16(3), 159–172.Google Scholar
  36. 36.
    Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science. New York: McGraw-Hill, Health Professions Division.Google Scholar
  37. 37.
    Hebb, D. O. (2005). The organization of behavior: A neuropsychological theory. Psychology Press.Google Scholar
  38. 38.
    Markram, H., Gerstner, W., & Sjöström, P. J. (2011). A history of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 3, 4.Google Scholar
  39. 39.
    Bi, G. Q., & Poo, M. M. (1998, December). Synaptic modifications in cultured hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–10472.Google Scholar
  40. 40.
    Zhang, L. I., Tao, H. W., Holt, C. E., Harris, W. A., & Poo, M. M. (1998, September). A critical window for cooperation and competition among developing retinotectal synapses. Nature, 395(6697), 37–44.Google Scholar
  41. 41.
    Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997, January). Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science, 275(5297), 213-215.Google Scholar
  42. 42.
    Froemke, R. C., & Dan, Y. (2002, March). Spike-timing-dependent synaptic modification induced by natural spike trains. Nature, 416(6879), 433–438.Google Scholar
  43. 43.
    Levy, W. B., & Steward, O. (1983, April). Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience, 8(4), 791–797.Google Scholar
  44. 44.
    Snider, G. S. (2008). Spike-timing-dependent learning in memristive nanodevices, In. IEEE International Symposium on Nanoscale Architectures, 2008, 85–92.Google Scholar
  45. 45.
    Serrano-Gotarredona, T., Masquelier, T., Prodromakis, T., Indiveri, G., & Linares-Barranco, B. (2013, February). STDP and STDP variations with memristors for spiking neuromorphic learning systems. Frontiers in Neuroscience, 7.Google Scholar
  46. 46.
    Park, S. et al. (2015, May). Electronic system with memristive synapses for pattern recognition, Scientific Reports, 5, 10123.Google Scholar
  47. 47.
    Zhao, B., Ding, R., Chen, S., Linares-Barranco, B., & Tang, H. (2015, September). Feedforward categorization on AER motion events using cortex-like features in a spiking neural network. IEEE Transactions on Neural Networks and Learning Systems, 26(9), 1963–1978.Google Scholar
  48. 48.
    Yakopcic, C., Alom, M. Z., & Taha, T. M. (2016). Memristor crossbar deep network implementation based on a Convolutional neural network. In. International Joint Conference on Neural Networks (IJCNN), 2016, 963–970.Google Scholar
  49. 49.
    Lennie, P. (2003). The cost of cortical computation. Current Biology, 6(13), 493–497.CrossRefGoogle Scholar
  50. 50.
    Kuzum, D., Jeyasingh, R. G., Lee, B., & Wong, H. S. P. (2011, May). Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. Nano Letters, 12, 2179–2186.Google Scholar
  51. 51.
    Kuzum, D., Jeyasingh, R. G. D., Yu, S., & Wong, H. S. P. (2012, December). Low-energy robust neuromorphic computation using synaptic devices. IEEE Transactions on Electron Devices, 59(12), 3489–3494.Google Scholar
  52. 52.
    Saïghi, S. et al. (2015, March). Plasticity in memristive devices for spiking neural networks. Frontiers in Neuroscience, 9.Google Scholar
  53. 53.
    La Barbera, S., Vincent, A. F., Vuillaume, D., Querlioz, D., & Alibart, F. (2016, December). Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing. Scientific Reports, 6, 39216.Google Scholar
  54. 54.
    Serb, A., Bill, J., Khiat, A., Berdan, R., Legenstein, R., & Prodromakis, T. (2016). Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nature Communications, 7, 12611.Google Scholar
  55. 55.
  56. 56.
    Choi, H. et al. (2009, August). An electrically modifiable synapse array of resistive switching memory, Nanotechnology, 20, 345201.Google Scholar
  57. 57.
    Laughlin, S. B., & Sejnowski, T. J. (2003). Communication in neuronal networks. Science, 301(5641), 1870–1874.Google Scholar
  58. 58.
    Siemon, A., Menzel, S., Waser, R., & Linn, E. (2015). Controllability of multi-level states in memristive device models using a transistor as current compliance during SET operation. In. International Joint Conference on Neural Networks (IJCNN), 2015, 1–8.Google Scholar
  59. 59.
    Goldberg, D. H., Cauwenberghs, G., & Andreou, A. G. (2001, July). Probabilistic synaptic weighting in a reconfigurable network of VLSI integrate-and-fire neurons. Neural Networks, 14(6–7), 781–793.Google Scholar
  60. 60.
    Suri, M. et al. (2012) CBRAM devices as binary synapses for low-power stochastic neuromorphic systems: auditory (cochlea) and visual (retina) cognitive processing applications. In Electron Devices Meeting (IEDM), 2012 (pp. 10.3.1–10.3.4).Google Scholar
  61. 61.
    Vincent, A. F., et al. (2014). Spin-transfer torque magnetic memory as a stochastic memristive synapse. In. IEEE International Symposium on Circuits and Systems (ISCAS), 2014, 1074–1077.Google Scholar
  62. 62.
    Jo, S. H., Chang, T., Ebong, I., Bhadviya, B. B., Mazumder, P., & Lu, W. (2010, April). Nanoscale memristor device as synapse in neuromorphic systems. Nano Letters, 10(4), 1297–1301.Google Scholar
  63. 63.
    Jo, S. H., Kim, K. H., & Lu, W. (2009, February). High-density crossbar arrays based on a Si memristive system. Nano Letters, 9(2), 870-874.Google Scholar
  64. 64.
    Borghetti, J., et al. (2009). A hybrid nanomemristor/transistor logic circuit capable of self-programming. Proceedings of the National Academy of Sciences, 106(6), 1699–1703.CrossRefGoogle Scholar
  65. 65.
    Abraham, W. C. (2003, April). How long will long-term potentiation last?. MyScienceWork. Google Scholar
  66. 66.
    Ohno, T., Hasegawa, T., Tsuruoka, T., Terabe, K., Gimzewski, J. K., & Aono, M. (2011, August). Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nature Materials, 10(8), 591–595.Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Fakhreddinne Zayer
    • 1
  • Wael Dghais
    • 2
  • Hamdi Belagcem
    • 1
  1. 1.Electronics and Microelectronics Laboratory, National Engineering School of Monastir (ENIM)University of MonastirMonastirTunisia
  2. 2.Institut National des Sceinces Appliquées et de Technologies de SousseSousseTunisia

Personalised recommendations