Skip to main content

Anodic Aluminum Oxide Growth and Structure

  • Chapter
  • First Online:
The Metallurgy of Anodizing Aluminum
  • 2064 Accesses

Abstract

In this chapter, the model for anodic oxide formation continues to tie initial surface oxidation with porous oxide growth resulting in the highly ordered, self-assembled network of individual oxide cells that comprise the Anodic Aluminum Oxide (AAO). The theory for anodic oxide nucleation and growth builds on the mechanistic approach for the formation and growth of the anodic oxide developed in Chap. 5, and continues to explain the process of anodic oxide development and growth, from surface polarization and surface reconstruction to total porous anodic oxide development and growth. Consideration of the conditions created in the developing oxide by the anodizing process parameters, in terms of the impact of growth stress and electrostriction, facilitates explanations for structural order of the oxide network and development of the significant AAO features: the central pore and knitlines that circumscribe each oxide cell in the network, as well as their function in total as a semiconductor, such that continued oxide growth is supported beyond surface reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The understanding that the anodic oxide behaves as a diode is as old as one of its first engineering applications, the condensator, invented by Eugene Ducretet in 1875. Recall from Chap. 2 that Ducretet determined that as it was forming, “the oxide (sic) coating allowed for the passage of current in one direction, but resisted the electric current flowing from the other direction.” He is credited with assigning the term “valve metal” to metals that exhibit this behavior [31].

References

  1. Runge, J. M. (2008). Interfacial phenomena and anodizing: Ramifications and process solutions. Proceedings of the 17th Annual AAC Conference, San Francisco, California.

    Google Scholar 

  2. Jones, D. A. (1996). Principles and prevention of corrosion (2nd ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  3. Lupis, C. H. P. (1983). Chemical thermodynamics of materials. New York, NY: Elsevier Science Publishing.

    Google Scholar 

  4. Shewmon, P. (1989). Diffusion in solids. Salem, MA: TMS Publication.

    Google Scholar 

  5. Murr, L. (1975). Interfacial phenomena in metals and alloys. Reading, MA: Addison-Wesley Publishing.

    Google Scholar 

  6. Rana, F. (2007). “Polarization”, Lecture 7, ECE 303. Department of Electrical and Computer Engineering, Cornell University.

    Google Scholar 

  7. Csokan, P. (1980). Nucleation mechanism in oxide formation during anodic oxidation of aluminum. In M. G. Fontana (Ed.), Advances in corrosion science and technology. New York, NY: Plenum Press.

    Google Scholar 

  8. Han, C., & Runge, J. (2002). The future of anodizing. Proceedings of the Annual Technical Conference and Exposition of the Aluminum Anodizers Council, Oakbrook, Illinois.

    Google Scholar 

  9. Çapraz, Ö., Shrotriya, P., Skeldon, P., Thompson, G., & Hebert, K. (2015). Role of oxide stress in the initial growth of self-organized porous aluminum oxide. Electrochimica Acta, 167, 404–411.

    Article  Google Scholar 

  10. Barkey, D., & McHugh, J. (2010). Pattern formation in anodic aluminum oxide growth by flow instability and dynamic re-stabilization. Journal of the Electrochemical Society, 157(11), C388–C391.

    Article  Google Scholar 

  11. Sundar, V., & Newnham, R. (1992). Electrostriction and polarization, Ferroelectrics (Vol. 135, pp. 431–446). New York, NY: Gordon and Breach Science Publishers, S.A.

    Google Scholar 

  12. Vanhumbeeck, J.-F., & Proost, J. (2008). On the contribution of electrostriction to charge-induced stresses in anodic oxide films. Electrochimica Acta, 53, 6165–6172.

    Article  Google Scholar 

  13. Lee, H.-Y., Peng, Y., & Shkel, Y. (2005). Strain-dielectric response of dielectrics as foundation for electrostriction stresses. Journal of Applied Physics, 98, 074104.

    Article  Google Scholar 

  14. Feng, X., Huang, Y., & Rosakis, A. (2007, November). On the stoney formula for a thin film/substrate system with nonuniform substrate thickness. Transactions of the ASME, 74, 1276–1281.

    Article  Google Scholar 

  15. Van Overmeere, Q., Blaffart, F., La Mantia, F., Di Quarto, F., & Proost, J. (2012). Electromechanical coupling in anodic niobium oxide: Electric field-induced strain, internal stress, and dielectric response. Journal of Applied Physics, 111, 113529.

    Article  Google Scholar 

  16. Goyon, J., Colin, A., Ovarlez, G., Ajdari, A., & Bocquet, L. (2008, July). Spatial cooperativity in soft glassy flows. Nature Letters, 454, 3.

    Article  Google Scholar 

  17. Runge, J. M. (2015). Enhancing anodic aluminum oxide for bonding applications. Proceedings of the 24th Annual AAC Conference, San Diego, California.

    Google Scholar 

  18. Garcia-Vergara, S. J., Skeldon, P., Thompson, G., & Habazaki, H. (2006). A flow model of porous anodic film growth on aluminium. Electrochimica Acta, 52, 681–687.

    Article  Google Scholar 

  19. Baron-Wiecheć, A., Ganem, J.-J., Garcia-Vergara, S. J., Skeldon, P., Thompson, G., & Vickridge, I. (2010). Tracer study of porous film growth on aluminum in phosphoric acid. Journal of the Electrochemical Society, 157(11), C399–C407.

    Article  Google Scholar 

  20. Çapraz, Ö., Shrotriya, P., Skeldon, P., Thompson, G., & Hebert, K. (2015). Factors controlling stress generation during the initial growth of porous anodic aluminum oxide. Electrochimica Acta, 159, 16–22.

    Article  Google Scholar 

  21. Baron-Wiecheć, A., Burke, M., Hashimoto, T., Liu, H., Skeldon, P., Thompson, G., Habazaki, H., Ganem, J.-J., & Vickridge, I. (2013). Tracer study of pore initiation in anodic alumina formed in phosphoric acid. Electrochimica Acta, 0013–4686.

    Google Scholar 

  22. Skeldon, P., Thompson, G. E., Garcia-Vergara, S. J., Iglesias-Rubianes, L., & Blanco-Pinzon, C. E. (2006). A tracer study of porous anodic alumina. Electrochemical and Solid-State Letters, 9(11), B47–B51.

    Article  Google Scholar 

  23. Runge, J. M., & Pomis, A. J. (2000). Anodic oxide film formation relating mechanism to composition and structure. Proceedings ASST, Manchester, England.

    Google Scholar 

  24. Paschanka, M., & Schneider, J. (2011). Origin of self-organisation in porous anodic alumina films derived from analogy with Rayleigh-Bénard convection cells. Journal of Materials Chemistry, 21, 18761.

    Article  Google Scholar 

  25. Toccafondi, C., Stępniowski, W. J., Leoncini, M., & Salerno, M. (2014). Advanced morphological analysis of patterns of thin anodic porous alumina. Materials Characterization, 94, 26–36.

    Article  Google Scholar 

  26. Runge, J. (2007). Formation of porous anodic oxide finishes: A new approach and theory. From the Conference Proceedings of Aluminium 2000, Florence.

    Google Scholar 

  27. Parkhutik, V. P., & Shershulsky, V. I. (1992). Theoretical modeling of porous oxide growth on aluminium. Journal of Physics D: Applied Physics, 25, 1258–1263.

    Article  Google Scholar 

  28. Runge, J. M., & Hossain, T. (2015). Interfacial phenomena in 7000 series alloys and their impact on the anodic oxide. Proceedings of Aluminium Two Thousand World Congress and International Conference on Extrusion and Benchmark ICEB 2015, Materials Today Proceedings.

    Google Scholar 

  29. Roth, A. (1940). Ein Beitrag zur Kenntnis der Struktur des elektrolyktisch erzeugten Aluminiumoxyds. Zeitschrift für anorganische und allgemeine Chemie, 244, 48–56.

    Google Scholar 

  30. Kniep, R., Lamperter, P., & Steeb, S. (1989). Structure of anodic oxide coatings on aluminum. Advanced Materials, 1(7), 229–231.

    Article  Google Scholar 

  31. Ducretet, M. E. (1875). Note Sur un Rhéotome Liquide a direction Constante, Fondé sur une Propriété Nouvelle de L’Aluminium. Journal of Theoretical and Applied Physics, 4(1), 84–85.

    Article  Google Scholar 

  32. Lerner, M. (2003). Is the barrier layer responsible for the cellular structure of aluminum oxide film anodized in sulfuric acid? Proceedings of AESF Surfin Conference, Chicago.

    Google Scholar 

  33. Uhlig, H. H. (1985). Corrosion and corrosion control, an introduction to corrosion science and engineering (2nd ed.). New York: Wiley & Sons.

    Google Scholar 

  34. Murphy, J. D., & Michelson, C. E. (1961). A theory for the formation of anodic oxide coatings on aluminium. Proceedings of the Conference on Anodizing Aluminium, Nottingham, UK (pp. 83–95).

    Google Scholar 

  35. Pashchanka, M., & Schneider, J. (2013). Experimental validation of the novel theory explaining self-organization in porous anodic alumina films. Physical Chemistry Chemical Physics, 15, 7070.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Runge, J.M. (2018). Anodic Aluminum Oxide Growth and Structure. In: The Metallurgy of Anodizing Aluminum. Springer, Cham. https://doi.org/10.1007/978-3-319-72177-4_6

Download citation

Publish with us

Policies and ethics