Skip to main content

A Brief History of Anodizing Aluminum

  • Chapter
  • First Online:
The Metallurgy of Anodizing Aluminum

Abstract

The chronological events in science and technology that lead to the development of the anodizing industry are presented. This chapter reviews important related interdisciplinary sciences that contributed to the discovery of passive behavior of various metals, the electrochemical formation of anodic oxide on aluminum, its characterization and development of applications. Additionally, important research and development specific to anodizing theory is provided that spans the late nineteenth and twentieth century to important research that is being carried out today is presented. The work of selected important scientists who contributed to the birth of the anodizing industry and the course of its theoretical development as well as key figures in modern anodizing are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diggle, J., Downie, T., & Goulding, C. (1968). Anodic oxide films on aluminum. Corrosion Science, 8(12), 857–920.

    Article  Google Scholar 

  2. Thompson, G. E. (1997). Porous anodic alumina: Fabrication, characterization and applications. Thin Solid Films, 297, 192–201.

    Article  Google Scholar 

  3. Lee, W., & Park, S.-J. (2014). Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures. Chemical Reviews, 114, 7487–7556.

    Article  Google Scholar 

  4. Poinern, G. E., Ali, N., & Fawcett, D. (2011). Progress in nano-engineered anodic aluminum oxide membrane development. Materials, 4, 487–526.

    Article  Google Scholar 

  5. Forbes, R. J. (1953). On the origin of Alchemy. Chymia, 4, 1–11.

    Article  Google Scholar 

  6. Keyser, P. T. (1993). The purpose of the Parthian galvanic cells: A First century A.D. battery used for analgesia. Journal of Near Eastern Sudies, 52(2), 81–98.

    Article  Google Scholar 

  7. Karpenko, V. (1992). The chemistry and metallurgy of transmutation. Ambix, 39, 47–62.

    Article  Google Scholar 

  8. El Khadem, H. S. (1996). A translation of a Zosimos’ text in an Arabic alchemy book. Journal of the Washington Academy of Sciences, 84(3), 168–178.

    Google Scholar 

  9. Levere, T. H. (2001). Berzelius and Laurent: A question of method. Chapter 8, “The rise of organic chemistry” of transforming matter: A history of chemistry from alchemy to the Buckyball (pp. 100–106). Baltimore: Johns Hopkins University Press.

    Google Scholar 

  10. Ohm, G. S. (1827). Die Galvanische Kette. Berlin: T.H. Riemann.

    Book  Google Scholar 

  11. Mehrer, H., & Stolwijk, N. (2009). Heroes and highlights in the history of diffusion. diffusion-fundamentals.org. 11(1), 1–32.

  12. Boyle, R. (1743). The experimental history of colours. The works of the Honourable Robert Boyle (Vol. 1, with a forward and biography of Mr. Boyle by Thomas Birch, 1743, Annotation IV, p 780 (on the production of brass through the diffusion of zink in copper, from about 1640)).

    Google Scholar 

  13. Brown, R. (1829). A brief account of microscopical observations made in the months of June, July and August 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies, 28 July 1829, pp 465–486.

    Google Scholar 

  14. Wisniak, J. (2013). Thomas Graham I. Contributions to thermodynamics, chemistry and the occlusion of gases. Para Quitarle El Polvo, Educación Química, 24(3), 316–325.

    Article  Google Scholar 

  15. Wöhler, F. (1828). Ueber künstliche Bildung des Harnstoffs. Annalen der Physik und Chemie, 12, 253–256.

    Article  Google Scholar 

  16. Presentation: The evolution of formulas and structure in organic chemistry in the 19th century. ursula.chem.yale.edu.

    Google Scholar 

  17. Wisniak, J. (2009). Auguste Laurent. Radical and radicalss (pp. 166–175). Educación Química, Abril des: Para Quitarle El Polvo.

    Google Scholar 

  18. Brooke, J. H. (1975). Laurent, Gerhardt, and the philosophy of chemistry. Historical Studies in the Physical Sciences, 6, 405–429.

    Article  Google Scholar 

  19. Langmuir, I. (1916). The relation between contact potentials and electrochemical action. Transactions of the Twenty-Ninth General Meeting of the American Electrochemical Society, 29, 125–182.

    Google Scholar 

  20. Davy, H. (1839). Outlines of a view of Galvanism. Journals of the Royal Institution, Vol. i., 1802. In Dr. Thomas Young and Sir Humphry Day, editors, The collected works of Sir Humphry Davy, Vol. II. Early miscellaneous papers (p. 193), edited by his brother, Dr. John Davy. London: Smith, Elder and Cornwall.

    Google Scholar 

  21. Davy, H. (1824/1825). On the corrosion of copper sheeting by seawater, and on methods of preventing this effect, and on their application to ships of war and other ships. Philosophical Transactions of the Royal Society, 114, 151–246; 115, 328–346.

    Google Scholar 

  22. Groysman, A. (2010). Humanitarian aspects of corrosion science and technology, Chap. 6. In Corrosion for everybody (pp. 252–253). New York: Springer.

    Chapter  Google Scholar 

  23. Faraday, M. (1922). Electricity of the voltaic pile and On the source of power in the Voltaic pile, Chapters 6 and 7. In E. Rhys (Ed.), Experimental researches in electricity (pp. 172–312). London: Everyman’s Library.

    Google Scholar 

  24. Fechner, G. T. (1831). Massbestimmungen über die galvanische Kette (pp. 242–244). Leipzig: F.A. Brockhaus.

    Google Scholar 

  25. Oleari, C. (2013). Leopoldo Nobili from Chapter 9 Color in optical coatings. In A. Piegari & F. Flory (Eds.), Optical thin films and coatings from materials to applications (p. 397). New Delhi: Woodhead Publishing.

    Google Scholar 

  26. DelaRive, A. (1858). A treatise on electricity, in theory and practice, Chap. II. In Chemical applications (Vol. III, pp. 512–566). London: Longman, Brown, Green, Longmans & Roberts.

    Google Scholar 

  27. Keir, J. (1790). Experiments and observations on the dissolution of metals in acids and their precipitations, with an account of the new compound acid menstruum, useful in some technical operations of parting metals. Part II, Section II, On the precipitation of silver from nitrous acid by iron. On the alterations which iron or its surface undergoes by the action of a solution of silver in nitrous acid, or of a pure concentrated nitrous acid. Philosopical Transactions, LXXX, 374–384.

    Google Scholar 

  28. Bennett, C. W., & Burnham, W. S. (1916). The passive state of metals. Transaction of the Twenty-Ninth General Meeting of the American Electrochemical Society, 29, 217–269.

    Google Scholar 

  29. Faraday, M. (1836). Letter to Mr. Brayley on some former Researches relative to the peculiar voltaic condition of Iron reobserved by Professor Schoenbein, supplementary to a letter to Mr. Phillips, in the Last Number. The London and Edinburgh Philosophical Magazine and Journal of Science, IX, 122–123.

    Google Scholar 

  30. Schoenbein, C. F. (1899). Letter to Michael Faraday, published in the Phil. Mag. S.3 vol.9 (1836) p.53 under the title: On a peculiar condition of Iron, by Professor Schoenbein, of Bâle. In G. Kahlbaum & F. Darbishire (Eds.), The letters of Faraday and Schoenbein, 1836 – 1862 (p. 1). London: Williams and Norgate.

    Google Scholar 

  31. Faraday, M. (1922). On a peculiar voltaic condition of iron (Schoenbein) and On a peculiar voltaic condition of iron (Faraday). In E. Rhys (Ed.), Experimental researches in electricity (pp. 317–332). London: Everyman’s Library.

    Google Scholar 

  32. Senter, G. (1914). A general discussion on the passivity of metals. Transactions of the Faraday Society IX, Part 3, pp. 203–213.

    Google Scholar 

  33. Schönbein, C. F. (1900). Letter to J. J. Berzelius, dated 22 April 1836. In G. W. A. Kahlbaum (Ed.), The letters of John Jakob Berzelius and Christian Friedrich Schönbein 1836 – 1847 (pp. 18–24). London: Williams and Norgate. Bibliolife, www.bibliolife.com/opensource.

    Google Scholar 

  34. Berzelius, J. J. (1900). Letter to C.F. Schönbein, dated 4 May 1837. In G. W. A. Kahlbaum (Ed.), The letters of John Jakob Berzelius and Christian Friedrich Schönbein 1836 – 1847 (pp. 24–27). London: Williams and Norgate. Bibliolife, www.bibliolife.com/opensource.

    Google Scholar 

  35. Cropper, W. H. (1988). James Joule’s work in electrochemistry and the emergence of the first law of thermodynamics. Historical Studies in the Physical and Biological Sciences, 19(1), 1–15.

    Article  Google Scholar 

  36. Wolfram, S. (2002). Notes for Ch. 9, Fundametal physics, Section: Irreversibility and the second law of thermodynamics. In A new kind of science (p. 1019). Champaign, IL: Wolfram Mediz.

    Google Scholar 

  37. Maxwell, J. C. (1865). A dynamical theory of the electromagnetic field. Philosophical Transactions of the Royal Society of London, 155, 450–512.

    Article  Google Scholar 

  38. Shewmon, P. (2016). Atomic theory of diffusion. In Diffusion in solids (2nd ed., pp. 53–96). Berlin: Springer.

    Chapter  Google Scholar 

  39. Skeldon, P., Thompson, G. E., Garcia-Vergera, S. J., Iglesias-Rubianes, L., & Blanco-Pinzon, C. E. (2006). A tracer study of porous anodic alumina. Electrochemical and Solid State Letters, 9(11), B47–B51.

    Article  Google Scholar 

  40. Mehrer, H. (2007). History and bibliography of diffusion, Chap. 1. In Diffusion in solids: Fundamentals, methods, materials, diffusion-controlled processes (pp. 1–16). Berlin: Springer.

    Chapter  Google Scholar 

  41. Roberts-Austen, W. C. (1896). Bakerian Lecture. On the diffusion of metals. Philosophical Transactions of the Royal Society of London, 187, 383–415.

    Article  Google Scholar 

  42. Arrhenius, S. (2012). In A. Bard, G. Inzelt, & F. Scholz (Eds.), Electrochemical dictionary. New York: Springer. (pp. 45–46).

    Google Scholar 

  43. Pais, A. (2005). The reality of molecules, section 5d. Eleven days later: Brownian motion, from Ch. 5 “Statistical Physics”. In Subtle is the lord: The science and life of Albert Einstein (pp. 93–104). Oxford: Oxford Universtiy Press.

    Google Scholar 

  44. Roeber, E. F. (1904). On the reality of atoms and ions. Electrochemical Industry, 11(11), 436–437.

    Google Scholar 

  45. Einstein, A. (1905). Die von der Molekularkinetischen Theorie den Wärme Gefordete Bewegung von in ruhenden Flüssigkeiten Suspendierten Teilchen. Ann Physik, 17, 549–560.

    Google Scholar 

  46. Góra, P. (2006). The theory of Brownian motion: A hundred years’ anniversary (pp. 52–57). Cracow, Poland: Marian Smoluchowski Institute of Physics, Jagellonian University.

    Google Scholar 

  47. Newburgh, R., Peidle, J., & Rueckner, W. (2006). Einstein, Perrin, and the reality of atoms: 1905 revisited. American Journal of Physics, 74(6), 478–481.

    Article  Google Scholar 

  48. Frenkel, J. (1926). Über die Wärmebewegung in festen and flüssigen Körper. Zeitschrift für Physik, 35(8–9), 652–699.

    Article  Google Scholar 

  49. Welker, H. (1996). Obituary, Walter Schottky. Physics Today, 29, 63–64.

    Article  Google Scholar 

  50. Wagner, S. (1929). Vorwart. In Thermodynamik: die Lehre von den Kreisprozessen den physikalischen und chemischen veränderungen un gleichgewichten. Berlin: Verlag von Julius Springer.

    Google Scholar 

  51. Nakajima, H. (1997). The discovery and acceptance of the Kirkendall effect: The result of a short research career. JOM, 49(6), 15–19.

    Article  Google Scholar 

  52. Hittorf, W. (1899). On the migration of ions during electrolysis. In Memoirs by H. Faraday, F. Kohlrausch, & H. M. Goodwin (Eds.), Harper’s scientific memoirs, VII. The fundamental laws of electrolytic conduction (pp. 49–79). New York: Harper and Brothers.

    Google Scholar 

  53. Helmholtz, H. (1853). Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die Thierisch-elektrischen Versuche. Annalen der Physik, 211–233.

    Google Scholar 

  54. Lewerena, H. J. (2013). On the structure of the Helmholtz layer and its implications on electrode kinetics. ECS Transactions, 50(52), 3–20.

    Article  Google Scholar 

  55. Arabatzis, T., & Gavroglu, K. (2005). Physical chemistry, Chap. 6. In C. A. Russel & G. K. Roberts (Eds.), Chemical history: Reviews of the recent literature (pp. 135–143). Cambridge: RSC publishing.

    Google Scholar 

  56. Kohlrausch, F. (1899). On the conductivity of electrolytes dissolved in water in relation to the migration of their components. In Memoirs by H. Faraday, F. Kohlrausch, & H. M. Goodwin (Eds.), Harper’s scientific Memoirs, VII. The fundamental laws of electrolytic conduction (pp. 85–92). New York: Harper and Brothers.

    Google Scholar 

  57. Pickover, C. (2008). Kohlrausch’s laws of conductivity, 1874 and 1875, from Section 1800 – 1900. In Archimedes to hawking: Laws of science and the great minds behind them (p. 387). Oxford: Oxford University Press.

    Google Scholar 

  58. Arrhenius, S. (1903). Development of the theory of electrolytic dissociation. Nobel Lecture, December 11, 1903.

    Google Scholar 

  59. Nernst, W. (1888). Zur Kinetik der in Lösung befindlichen Körper. Erste Abhandlung. Theorie der Diffusion. Zeitschrift für Physikalische Chemie, 2(9), 613–637.

    Google Scholar 

  60. Tafel, J. (1905). Über die Polarisation bei kathodischer Wasserstoffentwicklung. Zeitschrift für Physikalische Chemie, 50, 641–712.

    Google Scholar 

  61. Müller, K. (1969). Who was Tafel? Journal of the Research Institute for Catalysis, Hokkaido University, 17(1), 54–75.

    Google Scholar 

  62. Buff, H. (1857). Ueber das electrische Verhalten des Aluminiums. Annalen der Chemice und Pharmacie, CII, Bandes drittes Heft (pp. 265–284).

    Google Scholar 

  63. Beetz, W. (1866). Ueber Wasserstoff-Entwicklung an der Anode. Annalen der Physik, 203(1), 45–57.

    Article  Google Scholar 

  64. Müller, W. J. (1931). On the passivity of metals. Tranactions of the Faraday Society, London, 18, 737–751.

    Article  Google Scholar 

  65. Ducretet, M. E. (1875). Note sur un Rhéotome Liquide a Direction Constate, Fondé sur une Propriété nouvelle de L’Aluminium. J Phys Théor, 4, 84–85.

    Google Scholar 

  66. Mott, W. R. (1904). The corrosion of aluminium and its prevention. Electrochemical Industry, II(4), 129–130.

    Google Scholar 

  67. Pollak, C. (1897). German Patent: Elektrischer Flüssigkeitskondensator mit Aluminiumelektroden, No. 92564. Granted May 19, 1897.

    Google Scholar 

  68. Mershon patent, 1913.

    Google Scholar 

  69. Bengough, G. D., & Sutart, J. M. (1924). British Patent: Improved process of protecting surfaces of aluminium or aluminium alloys, No. 19,838/23. Accepted No. 3, 1924.

    Google Scholar 

  70. Flick, F. B. (1925). American Patent: Coating aluminum articles, No. 1,526,127. Granted Feb 10, 1925.

    Google Scholar 

  71. Pacz, A. (1925). American Patent: Coated aluminum articles and process and means for producing same, No. 1,551,613. Granted September 1, 1925.

    Google Scholar 

  72. Gower, C. H. R. (1928). British Patent: An improved process for providing a resistant coating upon the surfaces of aluminium and aluminium alloys, No. 27,880/27. Accepted May 24, 1928.

    Google Scholar 

  73. Zentrale, et al. (1935). Gmelins Handbuch der Anorganischen Chemie: Aluminium. Oberflächenbehandlung von Aluminium und Aluminiumlegierungen (pp. 451–534). Aluminium Tashenbuch, Herausgeber: Aluminium–Berlin.

    Google Scholar 

  74. Wernick, S., Pinner, R., & Sheasby, P. G. (2001). The surface treatment and finishing of aluminum and its alloys (6th ed., Vol. 1). Middlesex, England: ASM International, Finishing Publications.

    Google Scholar 

  75. Burgess, C. F., & Hambuechen, C. (1902). The electrolytic rectifier. The Transaction of the Inaugural Meeting of the American Electrochemical Society, Philadelphia, 4, 147–163.

    Google Scholar 

  76. Mott, W. R. (1904). Dimensions of the films on aluminium anodes. Electrochemical Industry, II(7), 268–271.

    Google Scholar 

  77. Mott, W. R. (1904). The electrical properties of the films that form on aluminium anodes. Electrochemical Industry, II(9), 352–355.

    Google Scholar 

  78. Mott, W. R. (1904). Colloidial precipitation upon aluminium anodes. Electrochemical Industry, II(11), 444–447.

    Google Scholar 

  79. Roeber, E. F. (Ed.). (1904). The film on the aluminium anode. Electrochemcial Industry, II(11), 436.

    Google Scholar 

  80. Guntherschulze, A. (1906). Über das Verhalten von Aluminiumanoden. Annalen der Physik, 929–954.

    Google Scholar 

  81. Guntherschulze, A. (1908). Die elektrolytische Ventilwirkung des Niobs und eine Klassifizierung des Verhaltens elektrolytishcer anoden. Annalen der Physik, 330(4), 775–782.

    Article  Google Scholar 

  82. Setoh, S., & Miyata, A. (1932). Researches on the anodic film of aluminium, II. Anodic behaviours of aluminium in aqueous solutions of oxalic acid. In Sci. Pap. I.P.C.R., Vol. 19, No. 397, pp. 237–291.

    Google Scholar 

  83. Burgers, W. G., Claasen, A., & Zernike, J. (1932). Über die chemische Natur der Oxydschichten, welche sich bei anodischer Polarisation auf den Metallen Aluminium, Zirkon, Titan and Tantal bilden (pp. 593–603). Eindhoven, Holland: Naturkundig Laboratorium der N.V. Philips’ Gloeilampenfabriken.x

    Google Scholar 

  84. VanGeel, W. C., & Schelen, B. J. J. (1957). Some properties of oxide layers produced on aluminium by electrolytic oxidation. Philips Research Reports, 12, 240–248.

    Google Scholar 

  85. Besser, B. P. (2007). Synopsis of the historical development of Schumann resonances. Radio Science, 42(RS2SO2), 1–20.

    Google Scholar 

  86. Rummel, T. (1936). Über Wachstum und Aufbau electrolytisch erzeugeter Aluminiumoxydschichten (pp. 518–550). Mitteilung aus dem Elektrophysikalischen Laboratorium des Elektrotechnishcen Institiutes, Technische Hochschule, München, 10 Januar 1936.

    Google Scholar 

  87. Baumann, W. (1938). Entstehung und Struktur elektrolytisch erzeugter Aluminiumoxydschichten (pp. 708–736). Mitteilung aus dem Elektrophysikalischen Laboratorium des Elektrotechnishcen Institiutes, Technische Hochschule, München, 19 Dezember 1938.

    Google Scholar 

  88. Edwards, J. D., & Keller, F. (1940). Formation of anodic coatings on aluminum (pp. 135–144). Pittsburgh: The Electrochemical Society.

    Google Scholar 

  89. Wernick, S. (1948). Theory of anodic oxidation of aluminium, Chapter 5. Electrolytic polishing and bright plating of metals (pp. 57–60). London: Alvin Redman Ltd., Whitfield Place.

    Google Scholar 

  90. Fraunhofer, J. A. (1976). Basic metal finishing. London: Paul Elek (Scientific Books) Ltd.

    Google Scholar 

  91. Keller, F., Hunter, M. S., & Robinson, D. L. (1953). Structural features of oxide coatings on aluminum. Journal of the Electrochemical Society, 100(9), 411–419.

    Article  Google Scholar 

  92. O’Sullivan, & Wood. (1970). The morphology and mechanism of formation of porous anodic films on aluminium. Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 317(1531), 511–543.

    Article  Google Scholar 

  93. Hoar, T. P., & Mott, N. F. (1959). A mechanism for the formation of porous anodic oxide films on aluminium. Journal of Physics and Chemistry of Solids, 9, 97–99. Pergamon Press.

    Google Scholar 

  94. Akahori, H. (1961). Electron microscopic study of growing mechanism of aluminium anodic oxide film. Journal of Electronmicroscopy, 10(3), 175–185.

    Google Scholar 

  95. Csokan, P. (1980). Nucleation mechanism in oxide formation during anodic oxidation of aluminum. In M. G. Fontana & R. W. Staehle (Eds.), Advance in corrosion science and technology (pp. 239–356). New York: Plenum Press.

    Chapter  Google Scholar 

  96. Murphy, J. F., & Michelson, C. E. (1961). Proceedings of a conference on anodising aluminium at the University of Nottingham, Convened by the Aluminium Development Association of London, September 12–14, 1961, pp. 83–95.

    Google Scholar 

  97. Davies, J. A., Domeij, B., Pringle, J. P. S., & Brown, F. (1965). The migration of metal and oxygen during anodic film formation. Journal of the Electrochemical Society, 112(7), 675–680.

    Article  Google Scholar 

  98. O’Sullivan, J. P., Hockey, J. A., & Wood, G. C. (1971). Infra-red spectroscopic study of anodic alumina films. Transaction of the Faraday Society, 67, 535–541.

    Google Scholar 

  99. Brace, A. W. (2000). The technology of anodizing aluminium (3rd ed.). Modena, Italy: Interall S.R.L.

    Google Scholar 

  100. Thompson, G. E., Furneaux, R. C., Goode, J. S., & Wood, G. C. (1978). Porous anodic film formation on aluminium substrates in phosphoric acid. Transactions of the Institute of Metal Finishing, 56(1m), 159–167.

    Article  Google Scholar 

  101. Thompson, G. E., & Wood, G. C. (1981). Porous anodic film formation on aluminium. Nature, 290, 230–232.

    Article  Google Scholar 

  102. Skeldon, P., Shimizu, K., Thompaon, G. E., & Wood, G. C. (1983). Barrier-type anodic films on aluminium in aqueous borate solutions: 2 – Film compositions by Rutherford backscattering spectroscopy and nuclear reaction methods. Surface and Interface Analysis, 5(6), 252–263.

    Article  Google Scholar 

  103. Thompson, G. E., Xu, Y., Skeldon, P., Shimizu, K., Han, S. H., & Wood, G. C. (1987). Anodic oxidation of aluminium. Philosophical Magazine, Part B, 55(6), 651–667.

    Article  Google Scholar 

  104. Kniep, R., Lamperter, P., & Steeb, S. (1989). Structure of anodic oxide coatings on aluminium. Advanced Materials, Communications, 7, 229–231.

    Article  Google Scholar 

  105. Kubicki, J. D., & Apitz, S. E. (1998). Molecular cluster models of aluminum oxide and aluminum hydroxide surfaces. American Mineralogist, 83, 1054–1066.

    Article  Google Scholar 

  106. Pringle, J. P. S. (1980). The anodic oxidation of superimposed niovium and tantalum layers. Electrochimica Acta, 25, 1403–1421.

    Article  Google Scholar 

  107. Pringle, J. P. S. (1980). The anodic oxidation of superimposed metallic layers: Theory. Electrochimica Acta, 25, 1423–1437.

    Article  Google Scholar 

  108. Furneaux, R., Rigby, W. R., & Davidson, A. P. (1989). The formation of controlled-porosity membranes from anodically oxidized aluminium. Letters to Nature, 337, 147–149.

    Article  Google Scholar 

  109. Masuda, H., & Fukuda, K. (1995). Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina. Science, 268, 1466–1468.

    Article  Google Scholar 

  110. Wang, H. H., Han, C., Willing, G., & Xiao, Z. (2003). Nanowire and nanotube syntheses through self-assembled nanoporous AAO templates. Material Research Society Symposium Proceedings, 775, 4.8.1–4.8.6.

    Google Scholar 

  111. Parkhutik, V. (1992). Theoretical modeling of porous oxide growth on aluminium. Journal of Physics D: Applied Physics, 25, 1258–1263.

    Article  Google Scholar 

  112. Patermarakis, G., & Karayannis, H. S. (1995). The mechanism of growth of porous anodic Al2O3 films on aluminium at high film thicknesses. Electrochimica Acta, 40(16), 2647–2656.

    Article  Google Scholar 

  113. Patermarakis, G. (1996). Transport phenomena inside the pores involved in the kinetics and mechanism of growth of porous anodic Al2O3films on aluminium. Journal of Electroanalytical Chemistry, 404, 69–76.

    Article  Google Scholar 

  114. Patermarakis, G. (1998). Development of a theory for the determination of the compostion of the anodizing solution inside the pores during the growth of porous anodic Al2O3 films on aluminium by a transport phenomenon analysis. Journal of Electroanalytical Chemistry, 447, 25–41.

    Article  Google Scholar 

  115. Patermarakis, G., & Moussoutzanis, K. (2001). Formulation of a criterion predicting the development of uniform and non-uniform abnormal porous anodic alumina coatings and revealing the mechanisms of their appearance and progress. Corrosion Science, 43, 1433–1464.

    Article  Google Scholar 

  116. Runge, J., & Pomis, A. (2000). Anodic oxide film formation: Relating mechanism to compostion and structure. In The Proceedings for Aluminium Surface Science and Technology Conference (ASST), May 2000, UMIST.

    Google Scholar 

  117. Lerner, M. (2003). Is the barrier layer responsible for the cellular structure of aluminum oxide film anodized in sulfuric acid? In Proceedings of AESF Surfin Conference, Chicago.

    Google Scholar 

  118. Garcia-Vergara, S. J., Iglesias-Rubianes, L., Blanco-Pinzon, C. E., Skeldon, P., Thompson, G. E., & Campestrini, P. (2006). Mecahnical instability and pore generation in anodic alumina. Proceedings of the Royal Society A, 462, 2345–2358.

    Article  Google Scholar 

  119. Garcia-Vergera, S. J., Skeldon, P., Thompson, G. E., & Habazaki, H. (2006). A flow model of porous anodic film growth on aluminium. Electrochimica Acta, 52, 681–687.

    Article  Google Scholar 

  120. Hauser, J., & Hebert, K. (May 2009). The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films. Nature Materials, 8, 415–420.

    Article  Google Scholar 

  121. Paschanka, M., & Schneider, J. (2011). Origin of self-organization in porous anodic alumina films derived from analogy with Rayleigh-Bénard convection cells. Journal of Materials Chemistry, 21, 18761–18767.

    Article  Google Scholar 

  122. Paschanka, M., & Schneider, J. (2013). Experimental validation of the novel theory explaining self-organization in porous anodic alumina films. Physical Chemistry Chemical Physics, 15, 7070.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Runge, J.M. (2018). A Brief History of Anodizing Aluminum. In: The Metallurgy of Anodizing Aluminum. Springer, Cham. https://doi.org/10.1007/978-3-319-72177-4_2

Download citation

Publish with us

Policies and ethics