Advertisement

Hair and Scalp Variation Related to Gender

  • Ferial Fanian
  • Alexandre Guichard
Chapter

Abstract

Nowadays, there is an increasing interest for studying the gender differences of various human organ, particularly the skin and its appendices.

By evoking gender hair variations, the first elements which come to mind are hair length, hair beauty, hair style and also the androgenic alopecia, female or male pattern. However, sex steroids have a much more tremendous impact on skin and hair by modulating epidermal and dermal thickness as well as immune system function, skin surface pH, quality of wound healing, sebaceous gland excretions, hair growth and response to treatment, among so many others.

By considering these variations, we could approach more specific to the hair disorders in order to provide more adapted and effective treatments.

Keywords

Environment Pollution Hair disorders Hair growth Gender identification Gender variations Sex Transgenders 

References

  1. 1.
    Dao H, Kazin RA. Gender differences in skin: a review of the literature. Gend Med. 2007;4(4):308–28.CrossRefGoogle Scholar
  2. 2.
    Schlake T. Determination of hair structure and shape. Semin Cell Dev Biol. 2007;18(2):267–73.CrossRefGoogle Scholar
  3. 3.
    Giacomoni PU, Mammone T, Teri M. Gender-linked differences in human skin. J Dermatol Sci. 2009;55(3):144–9.CrossRefGoogle Scholar
  4. 4.
    Thornton MJ, Taylor AH, Mulligan K, Al-Azzawi F, Lyon CC, O’Driscoll J, et al. Oestrogen receptor beta is the predominant oestrogen receptor in human scalp skin. Exp Dermatol. 2003;12(2):181–90.CrossRefGoogle Scholar
  5. 5.
    Pelletier G, Ren L. Localization of sex steroid receptors in human skin. Histol Histopathol. 2004;19(2):629–36.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Wehner G, Schweikert H-U. Estrone sulfate source of estrone and estradiol formation in isolated human hair roots: identification of a pathway linked to hair growth phase and subject to site-, gender-, and age-related modulations. J Clin Endocrinol Metab. 2014;99(4):1393–9.CrossRefGoogle Scholar
  7. 7.
    Graham JD, Clarke CL. Physiological action of progesterone in target tissues. Endocr Rev. 1997;18(4):502–19.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Schmidt JB, Lindmaier A, Spona J. Hormone receptors in pubic skin of premenopausal and postmenopausal females. Gynecol Obstet Investig. 1990;30(2):97–100.CrossRefGoogle Scholar
  9. 9.
    Dombovári J, Lajos P. Comparison of sample preparation methods for elemental analysis of human hair. Microchemistry. 1998;59(2):187–93.CrossRefGoogle Scholar
  10. 10.
    Barbosa AC, Jardim W, Dórea JG, Fosberg B, Souza J. Hair mercury speciation as a function of gender, age, and body mass index in inhabitants of the Negro River basin, Amazon, Brazil. Arch Environ Contam Toxicol. 2001;40(3):439–44.CrossRefGoogle Scholar
  11. 11.
    Takagi Y, Matsuda S, Imai S, Ohmori Y, Masuda T, Vinson JA, Mehra MC, Puri BK, Kaniewski A. Trace elements in human hair: an international comparison. Bull Environ Contam Toxicol. 1986;36(6):793–800.CrossRefGoogle Scholar
  12. 12.
    Khalique A, Ahmad S, Anjum T, Jaffar M, Shah MH, Shaheen N, et al. A comparative study based on gender and age dependence of selected metals in scalp hair. Environ Monit Assess. 2005;104(1-3):45–57.CrossRefGoogle Scholar
  13. 13.
    Tamburo E, Varrica D, Dongarrà G. Gender as a key factor in trace metal and metalloid content of human scalp hair. A multi-site study. Sci Total Environ. 2016;573:996–1002.CrossRefGoogle Scholar
  14. 14.
    Dongarrà G, Lombardo M, Tamburo E, Varrica D, Cibella F, Cuttitta G. Concentration and reference interval of trace elements in human hair from students living in Palermo, Sicily (Italy). Environ Toxicol Pharmacol. 2011;32(1):27–34.CrossRefGoogle Scholar
  15. 15.
    Senofonte O, Violante N, Caroli S. Assessment of reference values for elements in human hair of urban schoolboys. J Trace Elem Med Biol. 2000;14(1):6–13.CrossRefGoogle Scholar
  16. 16.
    Skalny AV, Skalnaya MG, Tinkov AA, Serebryansky EP, Demidov VA, Lobanova YN, et al. Reference values of hair toxic trace elements content in occupationally non-exposed Russian population. Environ Toxicol Pharmacol. 2015;40(1):18–21.CrossRefGoogle Scholar
  17. 17.
    Chojnacka K, Michalak I, Zielińska A, Górecka H, Górecki H. Inter-relationship between elements in human hair: the effect of gender. Ecotoxicol Environ Saf. 2010;73(8):2022–8.CrossRefGoogle Scholar
  18. 18.
    Zaichick S, Zaichick V. The effect of age and gender on 37 chemical element contents in scalp hair of healthy humans. Biol Trace Elem Res. 2010;134(1):41–54.CrossRefGoogle Scholar
  19. 19.
    Barman JM, Pecoraro V, Astore I. Method, technic and computations in the study of the trophic State of the human scalp hair. J Invest Dermatol. 1964;42:421–5.CrossRefGoogle Scholar
  20. 20.
    Van Neste DJJ, Rushton DH. Gender differences in scalp hair growth rates are maintained but reduced in pattern hair loss compared to controls. Skin Res Technol. 2016;22(3):363–9.CrossRefGoogle Scholar
  21. 21.
    Blume U, Ferracin J, Verschoore M, Czernielewski JM, Schaefer H. Physiology of the vellus hair follicle: hair growth and sebum excretion. Br J Dermatol. 1991;124(1):21–8.CrossRefGoogle Scholar
  22. 22.
    Trüeb RM. Aging of hair. J Cosmet Dermatol. 2005;4(2):60–72.CrossRefGoogle Scholar
  23. 23.
    Jo SJ, Paik SH, Choi JW, Lee JH, Cho S, Kim KH, et al. Hair graying pattern depends on gender, onset age and smoking habits. Acta Derm Venereol. 2012;92(2):160–1.CrossRefGoogle Scholar
  24. 24.
    Foitzik K, Krause K, Conrad F, Nakamura M, Funk W, Paus R. Human scalp hair follicles are both a target and a source of prolactin, which serves as an autocrine and/or paracrine promoter of apoptosis-driven hair follicle regression. Am J Pathol. 2006;168(3):748–56.CrossRefGoogle Scholar
  25. 25.
    Fabre N, Montastruc JL, Rascol O. Alopecia: an adverse effect of bromocriptine. Clin Neuropharmacol. 1993;16(3):266–8.CrossRefGoogle Scholar
  26. 26.
    Langan EA, Ramot Y, Goffin V, Griffiths CEM, Foitzik K, Paus R. Mind the (gender) gap: does prolactin exert gender and/or site-specific effects on the human hair follicle? J Invest Dermatol. 2010;130(3):886–91.CrossRefGoogle Scholar
  27. 27.
    Lu Z, Hasse S, Bodo E, Rose C, Funk W, Paus R. Towards the development of a simplified long-term organ culture method for human scalp skin and its appendages under serum-free conditions. Exp Dermatol. 2007;16(1):37–44.CrossRefGoogle Scholar
  28. 28.
    Philpott MP, Green MR, Kealey T. Human hair growth in vitro. J Cell Sci. 1990;97(Pt 3):463–71.Google Scholar
  29. 29.
    Goffin V, Bernichtein S, Touraine P, Kelly PA. Development and potential clinical uses of human prolactin receptor antagonists. Endocr Rev. 2005;26(3):400–22.CrossRefGoogle Scholar
  30. 30.
    Bernichtein S, Kayser C, Dillner K, Moulin S, Kopchick JJ, Martial JA, et al. J Biol Chem. 2003;278(38):35988–99.CrossRefGoogle Scholar
  31. 31.
    Rippe RCA, Noppe G, Windhorst DA, Tiemeier H, van Rossum EFC, Jaddoe VWV, et al. Splitting hair for cortisol? Associations of socio-economic status, ethnicity, hair color, gender and other child characteristics with hair cortisol and cortisone. Psychoneuroendocrinology. 2016;66:56–64.CrossRefGoogle Scholar
  32. 32.
    Manenschijn L, Schaap L, van Schoor NM, van der Pas S, Peeters GMEE, Lips P, et al. High long-term cortisol levels, measured in scalp hair, are associated with a history of cardiovascular disease. J Clin Endocrinol Metab. 2013;98(5):2078–83.CrossRefGoogle Scholar
  33. 33.
    Spack NP. Management of transgenderism. JAMA. 2013;309(5):478–84.CrossRefGoogle Scholar
  34. 34.
    Giltay EJ, Gooren LJ. Effects of sex steroid deprivation/administration on hair growth and skin sebum production in transsexual males and females. J Clin Endocrinol Metab. 2000;85(8):2913–21.CrossRefGoogle Scholar
  35. 35.
    Stevenson MO, Wixon N, Safer JD. Scalp hair regrowth in hormone-treated transgender woman. Transgender Health. 2016;1(1):202–4.CrossRefGoogle Scholar
  36. 36.
    Ginsberg BA. Dermatologic care of the transgender patient. Int J Womens Dermatol. 2017;3(1):65–7.CrossRefGoogle Scholar
  37. 37.
    Capitán L, Simon D, Meyer T, Alcaide A, Wells A, Bailón C, et al. Facial feminization surgery: simultaneous hair transplant during forehead reconstruction. Plast Reconstr Surg. 2017;139(3):573–84.CrossRefGoogle Scholar
  38. 38.
    Prahlow JA, Lantz PE, Cox-Jones K, Rao PN, Pettenati MJ. Gender identification of human hair using fluorescence in situ hybridization. J Forensic Sci. 1996;41(6):1035–7.CrossRefGoogle Scholar
  39. 39.
    Singh H, Gorea R, Aggarwal O, Jasuja O. Determination of sex from hair. J Punjab Acad Forensic Med Toxicol. 2004;4(1):3–4.Google Scholar
  40. 40.
    McMichael AJ. Ethnic hair update: past and present. J Am Acad Dermatol. 2003;48(6 Suppl):S127–33.CrossRefGoogle Scholar
  41. 41.
    Khumalo NP, Jessop S, Gumedze F, Ehrlich R. Hairdressing and the prevalence of scalp disease in African adults. Br J Dermatol. 2007;157(5):981–8.CrossRefGoogle Scholar
  42. 42.
    Khumalo NP, Jessop S, Gumedze F, Ehrlich R. Hairdressing is associated with scalp disease in African schoolchildren. Br J Dermatol. 2007;157(1):106–10.CrossRefGoogle Scholar
  43. 43.
    Camacho PM, Gharib H, Sizemore GW. Evidence-based endocrinology. Philadelphia: Lippincott Williams & Wilkins; 2007. 324p.Google Scholar
  44. 44.
    Dongarrà G, Varrica D, Tamburo E, D’Andrea D. Trace elements in scalp hair of children living in differing environmental contexts in Sicily (Italy). Environ Toxicol Pharmacol. 2012;34(2):160–9.CrossRefGoogle Scholar
  45. 45.
    Blume-Peytavi U, Whiting DA, Truëb RM. Hair growth and disorders, vol. XXVI. New York: Springer; 2008. p. 564.Google Scholar
  46. 46.
    Bencko V. Use of human hair as a biomarker in the assessment of exposure to pollutants in occupational and environmental settings. Toxicology. 1995;101(1-2):29–39.CrossRefGoogle Scholar
  47. 47.
    Barbosa AC, Silva SR, Dórea JG. Concentration of mercury in hair of indigenous mothers and infants from the Amazon basin. Arch Environ Contam Toxicol. 1998;34(1):100–5.CrossRefGoogle Scholar
  48. 48.
    Barbosa AC, Dórea JG. Indices of mercury contamination during breast feeding in the Amazon Basin. Environ Toxicol Pharmacol. 1998;6(2):71–9.CrossRefGoogle Scholar
  49. 49.
    Chittleborough G. A chemist’s view of the analysis of human hair for trace elements. Sci Total Environ. 1980;14(1):53–75.CrossRefGoogle Scholar
  50. 50.
    Chojnacka K, Górecka H, Górecki H. The influence of living habits and family relationships on element concentrations in human hair. Sci Total Environ. 2006;366(2-3):612–20.CrossRefGoogle Scholar
  51. 51.
    Huang L, Beauchemin D. Is it possible to identify gender and ethnicity via hair elements? Bioanalysis. 2014;6(22):2953–5.CrossRefGoogle Scholar
  52. 52.
    Peña-Fernández A, Lobo-Bedmar MC, González-Muñoz MJ. Monitoring lead in hair of children and adolescents of Alcalá de Henares, Spain. A study by gender and residential areas. Environ Int. 2014;72:170–5.CrossRefGoogle Scholar
  53. 53.
    Sanna E, Floris G, Vallascas E. Town and gender effects on hair lead levels in children from three Sardinian towns (Italy) with different environmental backgrounds. Biol Trace Elem Res. 2008;124(1):52–9.CrossRefGoogle Scholar
  54. 54.
    Evrenoglou L, Partsinevelou SA, Stamatis P, Lazaris A, Patsouris E, Kotampasi C, et al. Children exposure to trace levels of heavy metals at the north zone of Kifissos River. Sci Total Environ. 2013;443:650–61.CrossRefGoogle Scholar
  55. 55.
    Kozielec T, Pózniak J, Salacka A, Hornowska I, Kotkowiak L. Hair copper concentration in healthy children, teenagers, and adults living in Szczecin, Poland. Biol Trace Elem Res. 2003;93(1-3):47–54.CrossRefGoogle Scholar
  56. 56.
    Pastorelli AA, Baldini M, Stacchini P, Baldini G, Morelli S, Sagratella E, et al. Human exposure to lead, cadmium and mercury through fish and seafood product consumption in Italy: a pilot evaluation. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2012;29(12):1913–21.CrossRefGoogle Scholar
  57. 57.
    Jones KL, Smith DW, Ulleland CN, Streissguth P. Pattern of malformation in offspring of chronic alcoholic mothers. Lancet. 1973;1(7815):1267–71.CrossRefGoogle Scholar
  58. 58.
    Crunelle CL, Cappelle D, Covaci A, van Nuijs ALN, Maudens KE, Sabbe B, et al. Hair ethyl glucuronide as a biomarker of alcohol consumption in alcohol-dependent patients: role of gender differences. Drug Alcohol Depend. 2014;141:163–6.CrossRefGoogle Scholar
  59. 59.
    Jones J, Jones M, Plate C, Lewis D, Fendrich M, Berger L, et al. Liquid chromatography-tandem mass spectrometry assay to detect ethyl glucuronide in human fingernail: comparison to hair and gender differences. Am J Anal Chem. 2012;3(1):83–91.CrossRefGoogle Scholar
  60. 60.
    Morini L, Zucchella A, Polettini A, Politi L, Groppi A. Effect of bleaching on ethyl glucuronide in hair: an in vitro experiment. Forensic Sci Int. 2010;198(1-3):23–7.CrossRefGoogle Scholar
  61. 61.
    Bergfield W, Harrison S. Hair disorders. In: Manuals of gender dermatology. Sudbury: Jones and Bartlett Learning; 2011. p. 121–31.Google Scholar
  62. 62.
    Olsen EA, Messenger AG, Shapiro J, Bergfeld WF, Hordinsky MK, Roberts JL, et al. Evaluation and treatment of male and female pattern hair loss. J Am Acad Dermatol. 2005;52(2):301–11.CrossRefGoogle Scholar
  63. 63.
    Rebora A, Semino MT, Guarrera M. Trichodynia. Dermatology. 1996;192(3):292–3.CrossRefGoogle Scholar
  64. 64.
    Grimalt R, Ferrando J, Grimalt F. Trichodynia. Dermatology. 1998;196(3):374.Google Scholar
  65. 65.
    Willimann B, Trüeb RM. Hair pain (trichodynia): frequency and relationship to hair loss and patient gender. Dermatology. 2002;205(4):374–7.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoires FILORGA/FILL-MEDParisFrance
  2. 2.Expert in Trichology, Independent ConsultantLyonFrance

Personalised recommendations