Effects of Gender on Skin Physiology and Biophysical Properties

Chapter

Abstract

While there are countless studies on the biophysical properties of human skin, there are fewer that examine gender differences. Many studies are sponsored by the cosmetic industry and not surprisingly focus on women and often compare effects of aging or photoaging. Unfortunately, the literature that explores gender differences does not always present a clear picture as will be seen. This contribution will review sebum production, skin pH, barrier function as assessed by transepidermal water loss (TEWL), stratum corneum (SC) hydration measured by electrical properties and skin viscoelasticity and facial wrinkle formation. Studies consistently show lower sebum production in women especially after the onset of menopause. Several studies have shown women to have higher skin pH compared to men but many have found no difference and at least one has shown higher pH in males. Results on TEWL, elasticity and wrinkle formation are also inconsistent and differences in all these parameters vary with body site. Other confounding factors such as skin care habits and practices, history of sun exposure, diet and exposure to either first or second hand tobacco smoke are discussed.

Abbreviations

N.S.

No significant difference

SC

Stratum corneum

TEWL

Transepidermal water loss

Notes

Acknowledgements

The authors wish to thank Aimee Herbel (Amway Corporation) for her help in collecting the pH data in Fig. 1.1.

References

  1. 1.
    Pochi PE, Strauss JS, Downing DT. Age-related changes in sebaceous gland activity. J Invest Dermatol. 1979;73(1):108–11.CrossRefGoogle Scholar
  2. 2.
    Luebberding S, Krueger N, Kerscher M. Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH. Int J Cosmet Sci. 2013;35(5):477–83.CrossRefGoogle Scholar
  3. 3.
    Ogoshi K. Optical measurement of sebum excretion using opalescent film imprint. The Sebumeter. In: Handbook of non-invasive methods and the skin. Boca Raton: Taylor and Francis; 2006. p. 841–6.Google Scholar
  4. 4.
    Firooz A, Sadr B, Babakoohi S, Sarraf-Yazdy M, Fanian F, Kazerouni-Timsar A, et al. Variation of biophysical parameters of the skin with age, gender, and body region. Sci World J. 2012;2012:386936.CrossRefGoogle Scholar
  5. 5.
    Fluhr JW, Bankova L, Dikstein S. Skin surface pH: mechanism, measurement, importance. In: Serup J, GBE J, Grove GL, editors. Handbook of non-invasive methods and the skin. 2nd ed. Boco Raton: Taylor and Francis; 2006. p. 411–20.Google Scholar
  6. 6.
    Zlotogorski A. Distribution of skin surface pH on the forehead and cheek of adults. Arch Dermatol Res. 1987;279(6):398–401.CrossRefGoogle Scholar
  7. 7.
    Ehlers C, Ivens UI, Møller ML, Senderovitz T, Serup J. Females have lower skin surface pH than men. Skin Res Technol. 2001;7(2):90–4.CrossRefGoogle Scholar
  8. 8.
    Kim MK, Patel RA, Shinn AH, Choi SY, Byun HJ, Huh CH, et al. Evaluation of gender difference in skin type and pH. J Dermatol Sci. 2006;41(2):153–6.CrossRefGoogle Scholar
  9. 9.
    Man MQ, Xin SJ, Song SP, Cho SY, Zhang XJ, Tu CX, et al. Variation of skin surface pH, sebum content and stratum corneum hydration with age and gender in a large Chinese population. Skin Pharmacol Physiol. 2009;22(4):190–9.CrossRefGoogle Scholar
  10. 10.
    Nilsson GE. Measurement of water exchange through the skin. Med Biol Eng Comput. 1977;15:209–18.CrossRefGoogle Scholar
  11. 11.
    Fluhr JW, Feingold KR, Elias PM. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol. 2006;15(7):483–92.CrossRefGoogle Scholar
  12. 12.
    Chilcott RP, Farrar R. Biophysical measurements of human forearm skin in vivo: effects of site, gender, chirality and time. Skin Res Technol. 2000;6(2):64–9.CrossRefGoogle Scholar
  13. 13.
    Wilhelm KP, Cua AB, Maibach HI. Skin aging. Effect on transepidermal water loss, stratum corneum hydration, skin surface pH, and casual sebum content. Arch Dermatol. 1991;127(12):1806–9.CrossRefGoogle Scholar
  14. 14.
    Hadi H, Awadh AI, Hanif NM, Md Sidik NF, Mohd Rani MR, Suhaimi MS. The investigation of the skin biophysical measurements focusing on daily activities, skin care habits, and gender differences. Skin Res Technol. 2016;22(2):247–54.CrossRefGoogle Scholar
  15. 15.
    Barel AO, Clarys P. Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: Evaporimeter and Tewameter. Skin Pharmacol. 1995;8(4):186–95.CrossRefGoogle Scholar
  16. 16.
    Li X, Galzote C, Yan X, Li L, Wang X. Characterization of Chinese body skin through in vivo instrument assessments, visual evaluations, and questionnaire: influences of body area, inter-generation, season, sex, and skin care habits. Skin Res Technol. 2014;20(1):14–22.CrossRefGoogle Scholar
  17. 17.
    Barel AO, Clarys P. In vitro calibration of the capacitance method (Corneometer CM 825) and conductance method (Skicon-200) for the evaluation of the hydration state of the skin. Skin Res Technol. 1997;3:107–13.CrossRefGoogle Scholar
  18. 18.
    Berardesca E. EEMCO guidance for the assessment of stratum corneum hydration: electrical methods. Skin Res Technol. 1997;3:126–32.CrossRefGoogle Scholar
  19. 19.
    Fluhr JW, Gloor M, Lazzerini S, Kleesz P, Grieshaber R, Berardesca E. Comparative study of five instruments measuring stratum corneum hydration (Corneometer CM 820 and CM 825, Skicon 200, Nova DPM 9003, DermLab). Part II. In vivo. Skin Res Technol. 1999;5:171–8.CrossRefGoogle Scholar
  20. 20.
    Tagami H, Ohi M, Iwatsuki K, Kanamaru Y, Yamada M, Ichijo B. Evaluation of the skin surface hydration in vivo by electrical measurement. J Invest Dermatol. 1980;75(6):500–7.CrossRefGoogle Scholar
  21. 21.
    Agache PG, Monneur C, Leveque JL, de RJ. Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res. 1980;269(3):221–32.CrossRefGoogle Scholar
  22. 22.
    Diridollou S, Vabre V, Berson M, Vaillant L, Black D, Lagarde JM, et al. Skin ageing: changes of physical properties of human skin in vivo. Int J Cosmet Sci. 2001;23(6):353–62.CrossRefGoogle Scholar
  23. 23.
    Kligman AM. Early destructive effect of sunlight on human skin. JAMA. 1969;210(13):2377–80.CrossRefGoogle Scholar
  24. 24.
    Imokawa G, Nakajima H, Ishida K. Biological mechanisms underlying the ultraviolet radiation-induced formation of skin wrinkling and sagging II: over-expression of neprilysin plays an essential role. Int J Mol Sci. 2015;16(4):7776–95.CrossRefGoogle Scholar
  25. 25.
    Barel AO, Courage W, Clarys P. Suction method for measurement of skin mechanical properties: the Cutometer. In: Serup J, Jemec GBE, editors. Handbook of non-invasive methods and the skin. Ann Arbor: CRC Press; 1995. p. 335–40.Google Scholar
  26. 26.
    Murray BC, Wickett RR. Sensitivity of cutometer data to stratum corneum hydration level. Skin Res Technol. 1996;2:167–72.CrossRefGoogle Scholar
  27. 27.
    O’Goshi KI. Suction chamber methods for measurement of skin mechanics: the Cutometer. In: Serup J, Jemec GBE, Grove GL, editors. Handbook of non-invasive methods and the skin. 2nd ed. Boco Raton: Taylor and Francis; 2006. p. 579–91.Google Scholar
  28. 28.
    Nedelec B, Forget NJ, Hurtubise T, Cimino S, de Muszka F, Legault A, et al. Skin characteristics: normative data for elasticity, erythema, melanin, and thickness at 16 different anatomical locations. Skin Res Technol. 2016;22(3):263–75.CrossRefGoogle Scholar
  29. 29.
    Cua AB, Wilhelm KP, Maibach HI. Elastic properties of human skin: relation to age, sex, and anatomical region. Arch Dermatol Res. 1990;282(5):283–8.CrossRefGoogle Scholar
  30. 30.
    Ishikawa T, Ishikawa O, Miyachi Y. Measurement of skin elastic properties with a new suction device (I): relationship to age, sex and the degree of obesity in normal individuals. J Dermatol. 1995;22(10):713–7.CrossRefGoogle Scholar
  31. 31.
    Luebberding S, Krueger N, Kerscher M. Mechanical properties of human skin in vivo: a comparative evaluation in 300 men and women. Skin Res Technol. 2014;20(2):127–35.CrossRefGoogle Scholar
  32. 32.
    Ma L, Tan Y, Zheng S, Li J, Jiang C, Chen Z, et al. Correlation study between image features and mechanical properties of Han Chinese facial skin. Int J Cosmet Sci. 2017;39(1):93–100.CrossRefGoogle Scholar
  33. 33.
    Chung JH, Lee SH, Youn CS, Park BJ, Kim KH, Park KC, et al. Cutaneous photodamage in Koreans: influence of sex, sun exposure, smoking, and skin color. Arch Dermatol. 2001;137(8):1043–51.Google Scholar
  34. 34.
    Paes EC, Teepen HJ, Koop WA, Kon M. Perioral wrinkles: histologic differences between men and women. Aesthet Surg J. 2009;29(6):467–72.CrossRefGoogle Scholar
  35. 35.
    Hamer MA, Pardo LM, Jacobs LC, Ikram MA, Laven JS, Kayser M, et al. Lifestyle and physiological factors associated with facial wrinkling in men and women. J Invest Dermatol. 2017;137(8):1692–9.CrossRefGoogle Scholar
  36. 36.
    Chien AL, Qi J, Cheng N, Do TT, Mesfin M, Egbers R, et al. Perioral wrinkles are associated with female gender, aging, and smoking: development of a gender-specific photonumeric scale. J Am Acad Dermatol. 2016;74(5):924–30.CrossRefGoogle Scholar
  37. 37.
    Tsukahara K, Hotta M, Osanai O, Kawada H, Kitahara T, Takema Y. Gender-dependent differences in degree of facial wrinkles. Skin Res Technol. 2013;19(1):e65–71.CrossRefGoogle Scholar
  38. 38.
    Tsukahara K, Osanai O, Kitahara T, Takema Y. Seasonal and annual variation in the intensity of facial wrinkles. Skin Res Technol. 2013;19(3):279–87.CrossRefGoogle Scholar
  39. 39.
    Tamatsu Y, Tsukahara K, Sugawara Y, Shimada K. New finding that might explain why the skin wrinkles more on various parts of the face. Clin Anat. 2015;28(6):745–52.CrossRefGoogle Scholar
  40. 40.
    Makrantonaki E, Zouboulis CC. Androgens and ageing of the skin. Curr Opin Endocrinol Diabetes Obes. 2009;16(3):240–5.CrossRefGoogle Scholar
  41. 41.
    Hillebrand GG, Liang Z, Yan X, Yoshii T. New wrinkles on wrinkling: an 8-year longitudinal study on the progression of expression lines into persistent wrinkles. Br J Dermatol. 2010;162(6):1233–41.CrossRefGoogle Scholar
  42. 42.
    Okada HC, Alleyne B, Varghai K, Kinder K, Guyuron B. Facial changes caused by smoking: a comparison between smoking and nonsmoking identical twins. Plast Reconstr Surg. 2013;132(5):1085–92.CrossRefGoogle Scholar
  43. 43.
    Doshi DN, Hanneman KK, Cooper KD. Smoking and skin aging in identical twins. Arch Dermatol. 2007;143(12):1543–6.CrossRefGoogle Scholar
  44. 44.
    Muizzuddin N, Marenus K, Vallon P, Maes D. Effect of cigarette smoke on skin. J Soc Cosmet Chem. 1997;48:235–42.Google Scholar
  45. 45.
    Jamal A, King BA, Whitmill JBSD, Graffimder C. Current cigarette smoking among adults - United States, 2005-2015. Morb Mortal Wkly Rep. 2016;65:1205–11.CrossRefGoogle Scholar
  46. 46.
    Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, et al. Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr. 2012;51(6):637–63.CrossRefGoogle Scholar
  47. 47.
    Pezdirc K, Hutchesson M, Whitehead R, Ozakinci G, Perrett D, Collins CE. Can dietary intake influence perception of and measured appearance? A systematic review. Nutr Res. 2015;35(3):175–97.CrossRefGoogle Scholar
  48. 48.
    Cosgrove MC, Franco OH, Granger SP, Murray PG, Mayes AE. Dietary nutrient intakes and skin-aging appearance among middle-aged American women. Am J Clin Nutr. 2007;86(4):1225–31.CrossRefGoogle Scholar
  49. 49.
    Purba MB, Kouris-Blazos A, Wattanapenpaiboon N, Lukito W, Rothenberg EM, Steen BC, et al. Skin wrinkling: can food make a difference? J Am Coll Nutr. 2001;20(1):71–80.CrossRefGoogle Scholar
  50. 50.
    Iizaka S, Nagata S, Sanada H. Nutritional status and habitual dietary intake are associated with frail skin conditions in community-dwelling older people. J Nutr Health Aging. 2017;21(2):137–46.CrossRefGoogle Scholar
  51. 51.
    Blanck HM, Gillespie C, Kimmons JE, Seymour JD, Serdula MK. Trends in fruit and vegetable consumption among U.S. men and women, 1994-2005. Prev Chronic Dis. 2008;5(2):A35.Google Scholar
  52. 52.
    Draelos ZD. Male skin and ingredients relevant to male skin care. Br J Dermatol. 2012;166(Suppl 1):13–6.CrossRefGoogle Scholar
  53. 53.
    Oblong JE. Male skin care: shaving and moisturization needs. Dermatol Ther. 2012;25(3):238–43.CrossRefGoogle Scholar
  54. 54.
    Mizukoshi K, Akamatsu H. The investigation of the skin characteristics of males focusing on gender differences, skin perception, and skin care habits. Skin Res Technol. 2013;19(2):91–9.CrossRefGoogle Scholar
  55. 55.
    Battie C, Jitsukawa S, Bernerd F, Del BS, Marionnet C, Verschoore M. New insights in photoaging, UVA induced damage and skin types. Exp Dermatol. 2014;23(Suppl 1):7–12.CrossRefGoogle Scholar
  56. 56.
    Gilchrest BA. Skin aging and photoaging: an overview. J Am Acad Dermatol. 1989;21(3 Pt 2):610–3.CrossRefGoogle Scholar
  57. 57.
    Kligman LH, Kligman AM. The nature of photoaging: its prevention and repair. Photo-Dermatology. 1986;3(4):215–27.Google Scholar
  58. 58.
    Green AC, Hughes MC, McBride P, Fourtanier A. Factors associated with premature skin aging (photoaging) before the age of 55: a population-based study. Dermatology. 2011;222(1):74–80.CrossRefGoogle Scholar
  59. 59.
    Iannacone MR, Hughes MC, Green AC. Effects of sunscreen on skin cancer and photoaging. Photodermatol Photoimmunol Photomed. 2014;30:55.CrossRefGoogle Scholar
  60. 60.
    Haluza D, Simic S, Holtge J, Cervinka R, Moshammer H. Gender aspects of recreational sun-protective behavior: results of a representative, population-based survey among Austrian residents. Photodermatol Photoimmunol Photomed. 2016;32(1):11–21.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.James L. Winkle College of PharmacyUniversity of CincinnatiCincinnatiUSA
  2. 2.Global Discovery, Research and DevelopmentAmway CorporationAdaUSA

Personalised recommendations