Skip to main content

Capacity Assessment in Railway Networks

Part of the International Series in Operations Research & Management Science book series (ISOR,volume 268)

Abstract

Capacity assessment is essential for densely utilized railway networks. To guarantee stable operations, it is necessary to evaluate the capacity occupation and determine possible infrastructure bottlenecks. This requires accurate microscopic models that incorporate detailed infrastructure characteristics, signalling and interlocking logic, train characteristics, and driver behaviour. This chapter presents capacity assessment models based on a novel algebraic approach that builds on accurate running and blocking time computations. The capacity assessment should be undertaken on corridors, station areas, and networks, and as such, support a better understanding of the existing timetable constraints and possible infrastructure investments.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-72153-8_2
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-72153-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7

References

  1. Abril M, Salido MA, Barber F, Ingolotti L, Lova A, Tormos MP (2005) A heuristic technique for the capacity assessment of periodic trains. In: Proceedings of the 2005 conference on artificial intelligence research and development. IOS Press, Amsterdam, pp 339–346. ISBN: 1-58603-560-6 (cited on pages 27, 32)

    Google Scholar 

  2. Abril M, Barber F, Ingolotti L, Salido MA, Tormos MP, Lova A (2008) An assessment of railway capacity. Transp Res Part E Logist Transp Rev 44(5):774–806. https://doi.org/10.1016/j.tre.2007.04.001 (cited on pages 28, 31, 32)

  3. Armstrong J, Preston J, Hood I (2015) Evaluating capacity utilisation and its upper limits at railway nodes. In: Proceedings of the 13th conference on advanced systems in public transport (CASPT2015), Rotterdam (cited on page 32)

    Google Scholar 

  4. Bešinović N, Goverde RMP, Quaglietta E (2017) Microscopic models and network transformations for automated railway traffic planning. Comput Aided Civ Inf Eng 32(2):89–106. https://doi.org/10.1111/mice.12207 (cited on page 29)

    CrossRef  Google Scholar 

  5. Büker T, Seybold B (2012) Stochastic modelling of delay propagation in large networks. J Rail Transp Plann Manage 2(1–2):34–50. https://doi.org/10.1016/j.jrtpm.2012.10.001 (cited on page 26)

    CrossRef  Google Scholar 

  6. Burdett RL (2015) Multi-objective models and techniques for analysing the absolute capacity of railway networks. Eur J Oper Res 245(2):489–505. https://doi.org/10.1016/j.ejor.2015.03.020 (cited on page 26)

    CrossRef  Google Scholar 

  7. Burdett RL Kozan E (2006) Techniques for absolute capacity determination in railways. Transp Res B Methodol 40(8):616–632. https://doi.org/10.1016/j.trb.2005.09.004 (cited on pages 26, 27)

  8. Čičak M, Mlinarić TJ, Abramović B (2012) Methods for determining throughput capacity of railway lines using coefficients of elimination. PROMET-Traffic Transp 16(2):63–69. https://doi.org/10.7307/ptt.v16i2.575 (cited on pages 27, 32)

  9. Delorme X, Gandibleux X, Rodriguez J (2009) Stability evaluation of a railway timetable at station level. Eur J Oper Res 195(3):780–790. https://doi.org/10.1016/j.ejor.2007.06.062 (cited on pages 26, 31)

  10. Ekman J (2011) Kaban-a tool for analysis of railway capacity. In: Computational methods and experimental measurements XV, pp 693–702. WIT Press, Ashurst. https://doi.org/10.2495/cmem110611 (cited on page 37)

    Google Scholar 

  11. Eliasson J, Börjesson M (2014) On timetable assumptions in railway investment appraisal. Transp Policy 36:118–126. https://doi.org/10.1016/j.tranpol.2014.08.008 (cited on page 26)

    CrossRef  Google Scholar 

  12. Gaubert S, Mairesse J (1999) Modeling and analysis of timed Petri nets using heaps of pieces. IEEE Trans Autom Control 44:683–697. https://doi.org/10.1109/9.754807 (cited on page 33)

    CrossRef  Google Scholar 

  13. Gibson S, Cooper G, Ball B (2002) Developments in transport policy: the evolution of capacity charges on the UK rail network. J Transp Econ Policy 36(2):341–354. https://jstor.org/stable/20053906 (cited on page 30)

  14. Goverde RMP (2005) Punctuality of railway operations and timetable stability analysis. PhD thesis. Delft University of Technology. UUID: a40ae4f1-1732-4bf3-bbf5-fdb8dfd635e7 (cited on page 40)

    Google Scholar 

  15. Goverde RMP (2007) Railway timetable stability analysis using max-plus system theory. Transp Res B Methodol 41(2):179–201. https://doi.org/10.1016/j.trb.2006.02.003 (cited on pages 27, 33, 37, 40)

  16. Goverde RMP (2010) A delay propagation algorithm for large-scale railway traffic networks. Transp Res Part C Emerg Technol 18(3):269–287. https://10.1016/j.trc.2010.01.002 (cited on page 37)

  17. Goverde RMP, Hansen IA (2013) Performance indicators for railway timetables. In: 2013 IEEE international conference on intelligent rail transportation (ICIRT). IEEE, New York, pp 301–306. https://doi.org/10.1109/icirt.2013.6696312 (cited on page 27)

    CrossRef  Google Scholar 

  18. Goverde RMP, Corman F, D’Ariano A (2013) Railway line capacity consumption of different railway signalling systems under scheduled and disturbed conditions. J Rail Transp Plann Manage 3(3):78–94. https://doi.org/10.1016/j.jrtpm.2013.12.001 (cited on page 27)

    CrossRef  Google Scholar 

  19. Hansen IA, Pachl J (2014) Railway timetabling & operations: analysis, modelling, optimisation, simulation, performance evaluation. Eurailpress, Hamburg. ISBN: 978-3-7771-0462-1 (cited on page 27)

    Google Scholar 

  20. Harrod S (2009) Capacity factors of a mixed speed railway network. Transp Res Part E Logist Transp Rev 45(5):830–841. https://doi.org/10.1016/j.tre.2009.03.004 (cited on page 27)

    CrossRef  Google Scholar 

  21. Heidergott B, de Vries R (2001) Towards a (max,+) control theory for public transportation networks. Discrete Event Dyn Syst 11(4):371–398. https://doi.org/10.1023/A:1011225209640 (cited on page 37)

  22. Heidergott B, Jan Olsder G, van der Woude J (2014) Max Plus at work: modeling and analysis of synchronized systems: a course on Max-Plus algebra and its applications. Princeton University Press, Princeton. ISBN: 978-0-691-11763-8 (cited on pages 33, 37, 39, 40)

    Google Scholar 

  23. Hu J, Li H, Meng L, Xu X (2013) Modeling capacity of urban rail transit network based on bi-level programming. In: 2013 joint rail conference. American Society of Mechanical Engineers. https://doi.org/10.1115/jrc2013-2429 (cited on page 27)

  24. Huisman T, Boucherie RJ, van Dijk NM (2002) A solvable queueing network model for railway networks and its validation and applications for the Netherlands. Eur J Oper Res 142(1):30–51. https://doi.org/10.1016/s0377-2217(01)00269-7 (cited on page 26)

    CrossRef  Google Scholar 

  25. Jensen LW, Landex A, Nielsen AO, Kroon LG, Schmidt M (2017) Strategic assessment of capacity consumption in railway networks: framework and model. Transp Res Part C Emerg Technol 74:126–149. ISSN: 0968-090X. https://doi.org/10.1016/j.trc.2016.10.013 (cited on pages 26, 31)

  26. Krueger H (1999) Parametric modeling in rail capacity planning. In Simulation conference proceedings, 1999 Winter. vol 2. IEEE. Phoenix, AZ, pp 1194–1200. https://10.1109/wsc.1999.816840 (cited on page 26)

  27. Lai Y-C, Barkan C (2009) Enhanced parametric railway capacity evaluation tool. Transp Res Rec J Transp Res Board 2117:33–40. https://doi.org/10.3141/2117-05 (cited on page 26)

    CrossRef  Google Scholar 

  28. Landex A (2009) Evaluation of railway networks with single track operation using the UIC 406 capacity method. Netw Spat Econ 9(1):7–23. https://doi.org/10.1007/s11067-008-9090-7 (cited on pages 27, 32)

  29. Lindfeldt A (2015) Railway capacity analysis: methods for simulation and evaluation of timetables, delays and infrastructure. PhD thesis, KTH Royal Institute of Technology. ISBN: 978-91-87353-65-9 (cited on page 28)

    Google Scholar 

  30. Lindner T (2011) Applicability of the analytical UIC Code 406 compression method for evaluating line and station capacity. J Rail Transp Plann Manage 1(1):49–57. https://doi.org/10.1016/j.jrtpm.2011.09.002 (cited on page 32)

    CrossRef  Google Scholar 

  31. Lucchini L, Rivier R, Emery D (2000) CAPRES network capacity assessment for Swiss North-South rail freight traffic. In: Computers in railways VII. WIT Press, Ashurst, pp 221–230. https://doi.org/10.2495/CR000211 (cited on page 37)

    Google Scholar 

  32. Mackie P, Preston J (1998) Twenty-one sources of error and bias in transport project appraisal. Transp Policy 5(1):1–7. https://doi.org/10.1016/s0967-070x(98)00004-3 (cited on page 26)

    CrossRef  Google Scholar 

  33. Melody KS (2012) Railway track capacity: measuring and managing. PhD thesis. University of Southampton, Faculty of Engineering and the Environment. https://eprints.soton.ac.uk/348816 (cited on page 31)

  34. Mussone L, Calvo RW (2013) An analytical approach to calculate the capacity of a railway system. Eur J Oper Res 228(1):11–23. https://doi.org/10.1016/j.ejor.2012.12.027 (cited on page 26)

    CrossRef  Google Scholar 

  35. Network Rail (2015) Timetable planning rules. Oct 2015. https://networkrail.co.uk/aspx/3741.aspx (cited on page 31)

  36. Odijk MA, Romeijn HE, van Maaren H (2006) Generation of classes of robust periodic railway timetables. Comput Oper Res 33(8):2283–2299. https://doi.org/10.1016/j.cor.2005.02.004 (cited on page 26)

    CrossRef  Google Scholar 

  37. ON-TIME (2012) Methods for capacity assessment in Europe. Technical report ONTWP03-I-UDB-009-03 (cited on pages 26, 31)

    Google Scholar 

  38. ON-TIME (2014) Benchmark analysis, test and integration of timetable tools. Technical report ONT-WP03-D-TUT-037-02 (cited on page 32)

    Google Scholar 

  39. Pachl J (2014) Railway operation and control, 3rd edn. VTD Rail Publishing, Mountlake Terrace. ISBN: 978-0-9719915-6-9 (cited on page 28)

    Google Scholar 

  40. Pouryousef H, Lautala P, White T (2015) Railroad capacity tools and methodologies in the US and Europe. J Modern Transp 23(1):30–42. https://doi.org/10.1007/s40534-015-0069-z (cited on pages 30, 32)

  41. Quaglietta E (2014) A simulation-based approach for the optimal design of signalling block layout in railway networks. Simul Model Pract Theory 46:4–24. https://doi.org/10.1016/j.simpat.2013.11.006 (cited on page 32)

    CrossRef  Google Scholar 

  42. RMCon (2012) RailSys 8 Classic, Railsys 8 Enterprise, network wide timetable and infrastructure management. Technical report. Rail management consultants GmbH (RMCon), Hanover (cited on page 26)

    Google Scholar 

  43. Rotoli F, Cawood EN, Soria A (2016) Capacity assessment of railway infrastructure: tools, methodologies and policy relevance in the EU context. Technical report. EUR 27835 EN, Joint Research Center, European Union. https://doi.org/10.2791/037759 (cited on pages 28, 32)

  44. Schmidt MJR (2014) The effect of infrastructure changes on railway operations. PhD thesis. University of Louisville. https://doi.org/10.18297/etd/1769 (cited on page 28)

  45. Schwanhäußer W (1978) Die Ermittlung der Leistungsfähigkeit von großen Fahrstraßenknoten und von Teilen des Eisenbahnnetzes. AET 33:7–18. ISSN: 0066-6300 (cited on page 26)

    Google Scholar 

  46. Schwanhäußer W (1994) The status of German railway operations management in research and practice. Transp Res A Policy Pract 28(6):495–500. https://doi.org/10.1016/0965-8564(94)90047-7 (cited on page 26)

    CrossRef  Google Scholar 

  47. Shih M-C, Dick C, Sogin S, Barkan C (2014) Comparison of capacity expansion strategies for single-track railway lines with sparse sidings. Transp Res Rec J Transp Res Board 2448:53–61. https://doi.org/10.3141/2448-07 (cited on page 28)

    CrossRef  Google Scholar 

  48. Sogin S, Lai Y-C, Dick CT, Barkan C (2013) Comparison of capacity of single and double-track rail lines. Transp Res Rec J Transp Res Board 2374:111–118. https://doi.org/10.3141/2374-13 (cited on page 27)

    CrossRef  Google Scholar 

  49. Strategic Rail Authority (2014) Capacity utilisation policy: network utilisation strategy. SRA, London (cited on page 28)

    Google Scholar 

  50. TRB (2013) Transit capacity and quality of service manual, 3rd edn. Transit Cooperative Research Program (TCRP) Report 165. Transportation Research Board, Washington. https://doi.org/10.17226/24766 (cited on page 27)

  51. UIC (2004) Code 406: capacity, 1st edn. International Union of Railways, Paris (cited on pages 27, 30, 31)

    Google Scholar 

  52. UIC (2013) Code 406: capacity, 2nd edn. International Union of Railways, Paris (cited on pages 27, 28, 30, 31, 32)

    Google Scholar 

  53. UNECE (2015) Number of railway passengers by country, passengers and time. Sept 2015. https://w3.unece.org/PXWeb2015/pxweb/en/STAT/STAT_40-TRTRANS_03-TRRAIL (cited on page 26)

  54. Website of RailSys (2017) Rail management consultants GmbH. June 2017. https://rmcon.de/railsys-en/railsys-suite (cited on page 32)

  55. Weik N, Niebel N, Nießen N (2016) Capacity analysis of railway lines in Germany – a rigorous discussion of the queueing based approach. J Rail Transp Plann Manage 6(2):99–115. https://doi.org/10.1016/j.jrtpm.2016.06.001 (cited on page 26)

    CrossRef  Google Scholar 

  56. Wendler E (2007) The scheduled waiting time on railway lines. Transp Res B Methodol 41(2):148–158. https://doi.org/10.1016/j.trb.2006.02.009 (Not cited.)

    CrossRef  Google Scholar 

  57. Yuan J, Hansen IA (2007) Optimizing capacity utilization of stations by estimating knock-on train delays. Transp Res B Methodol 41(2):202–217. https://doi.org/10.1016/j.trb.2006.02.004 (cited on page 26)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola Bešinović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Bešinović, N., Goverde, R.M.P. (2018). Capacity Assessment in Railway Networks. In: Borndörfer, R., Klug, T., Lamorgese, L., Mannino, C., Reuther, M., Schlechte, T. (eds) Handbook of Optimization in the Railway Industry. International Series in Operations Research & Management Science, vol 268. Springer, Cham. https://doi.org/10.1007/978-3-319-72153-8_2

Download citation