Advertisement

Delay Propagation and Delay Management in Transportation Networks

  • Twan Dollevoet
  • Dennis Huisman
  • Marie Schmidt
  • Anita Schöbel
Chapter
Part of the International Series in Operations Research & Management Science book series (ISOR, volume 268)

Abstract

Should connecting trains wait for delayed feeder trains? Or is it better for the passengers if trains depart on time?

Questions of this type are the subject of delay management, which will be treated in this chapter from the point of view of the passengers. We start by discussing how delays are propagated through a public transportation network, and how such propagations can be modeled using event-activity networks.

We then focus on the question of finding an optimal solution to the delay management problem in case some (known) source delays have occurred. We discuss which decisions can be made and how these can be reflected by variables and constraints in integer programming models. In particular, we show how station capacities and the limited capacity of the tracks can be taken into account. Special emphasis will be given to the discussion of passenger-oriented objective functions. We introduce several ways on how to measure the effects that delays have on passengers and explain how to include the resulting objective functions in the models.

Next, we discuss solution approaches for delay management. In particular, we discuss heuristics that decompose the delay management problem and solve it within short computation times. Finally, we give some insights into delay management in practice. We review some simple delay management strategies used today and discuss recent developments that make it possible to implement more advanced methods in practice as well.

References

  1. 1.
    Bauer R, Schöbel A (2014) Rules of thumb – practical online strategies for delay management. Public Transp 6(1):85–105. https://doi.org/10.1007/s12469-013-0082-8 (cited on pages 306,312, 314)
  2. 2.
    Cicerone S, Di Stefano G, Schachtebeck M, Schöbel A (2012) Multi-stage recovery robustness for optimization problems: a new concept for planning under disturbances. Inf Sci 190:107–126. https://doi.org/10.1016/j.ins.2011.12.010 (cited on page 314)CrossRefGoogle Scholar
  3. 3.
    Corman F, D’Ariano A, Pacciarelli D, Pranzo M (2012) Bi-objective conflict detection and resolution in railway traffic management. Transp Res C 20:79–94. https://doi.org/10.1016/j.trc.2010.09.009 (cited on pages 295, 297)
  4. 4.
    De Giovanni L, Heilporn G, Labbé M (2008) Optimization models for the single delay management problem in public transportation. Eur J Oper Res 189(3):762–774. https://doi.org/10.1016/j.ejor.2006.10.065 (cited on page 295)CrossRefGoogle Scholar
  5. 5.
    de Lugt N (2013) Delay management: improving rules of thumb concerning wait-depart decisions. MSc thesis, Tilburg University (cited on pages 306, 314)Google Scholar
  6. 6.
    Dollevoet T, Huisman D (2014) Fast heuristics for delay management with passenger rerouting. Public Transp 6(1–2):74–89. https://doi.org/10.1007/s12469-013-0076-6 (cited on pages 304, 306, 311)
  7. 7.
    Dollevoet T, Huisman D, Schmidt M, Schöbel A (2009) Delay management with re-routing of passengers. In: Clausen J, Di Stefano G (eds) ATMOS 2009. Dagstuhl Seminar Proceedings. ISBN: 978-3-939897-11-8. https://doi.org/10.4230/OASIcs.ATMOS.2009.2143 (cited on page 304)
  8. 8.
    Dollevoet T, Schmidt M, Schöbel A (2011) Delay management including capacities of stations. In: Caprara A, Kontogiannis S (eds) 11th workshop on algorithmic approaches for transportation modelling, optimization, and systems. OpenAccess series in informatics (OASIcs), vol 20. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, pp 88–99. ISBN: 978-3-939897-33-0. https://doi.org/10.4230/OASIcs.ATMOS.2011.88 (cited on page 298)Google Scholar
  9. 9.
    Dollevoet T, Huisman D, Schmidt M, Schöbel A (2012) Delay management with rerouting of passengers. Transp Sci 46(1):74–89. https://doi.org/10.1287/trsc.1110.0375 (cited on pages 303, 304, 306, 310)
  10. 10.
    Dollevoet T, Corman F, D’Ariano A, Huisman D (2014) An iterative optimization framework for delay management and train scheduling. Flex Serv Manuf J 26(4):490–515. https://doi.org/10.1007/s10696-013-9187-2 (cited on page 304)CrossRefGoogle Scholar
  11. 11.
    Dollevoet T, Huisman D, Kroon L, Schmidt M, Schöbel A (2015) Delay management including capacities of stations. Transp Sci 49(2):185–203. https://doi.org/10.1287/trsc.2013.0506 (cited on pages 299, 304, 308, 309)
  12. 12.
    Gattermann P, Harbering J, Schiewe A, Schöbel A (2017) LinTim – integrated optimization in public transportation, June 2017. https://lintim.math.uni-goettingen.de (cited on page 314)
  13. 13.
    Ginkel A, Schöbel A (2007) To wait or not to wait? The bicriteria delay management problem in public transportation. Transp Sci 41(4):527–538. https://doi.org/10.1287/trsc.1070.0212 (cited on page 295)CrossRefGoogle Scholar
  14. 14.
    Goerigk M, Schachtebeck M, Schöbel A (2013) Evaluating line concepts using travel times and robustness: simulations with the Lintim toolbox. Public Transport 5(3):267–284. https://doi.org/10.1007/s12469-013-0072-x (cited on page 314)CrossRefGoogle Scholar
  15. 15.
    Goerigk M, Knoth M, Müller-Hannemann M, Schmidt M, Schöbel A (2014) The price of strict and light robustness in timetable information. Transp Sci 48:225–242. https://doi.org/10.1287/trsc.2013.0470 (cited on page 289)CrossRefGoogle Scholar
  16. 16.
    I&M (2016) Vervoerplan NS 2017 en beheerplan ProRail 2017. Letter of the Dutch parliament from “Ministerie van Infrastructuur en Milieu” (December 13, 2016) (cited on page 313)Google Scholar
  17. 17.
    Kecman P, Corman F, Peterson A, Joborn M (2015) Stochastic prediction of train delays in real-time using Bayesian networks. In: Conference on advanced systems in public transport (CASPT) (cited on page 294)Google Scholar
  18. 18.
    Kirchoff F (2015) Verspätungsfortpflanzung in Bahnnetzen, Modellierung und Berechnung mit Verteilungsfamilien. PhD thesis, University of Technology Claustal, Clausthal-Zellerfeld (cited on page 294)Google Scholar
  19. 19.
    Kliewer N Suhl L (2011) A note on the online nature of the railway delay management problem. Networks 57(1):28–37. https://doi.org/10.1002/net.20381 (cited on pages 306, 314)
  20. 20.
    Lamorgese L, Mannino C (2015) An exact decomposition approach for the real-time train dispatching problem. Oper Res 63:48–64. https://doi.org/10.1287/opre.2014.1327 (cited on page 309)CrossRefGoogle Scholar
  21. 21.
    Liebchen C, Möhring R (2007) The modeling power of the periodic event scheduling problem: railway timetables – and beyond. In: Geraets F, Kroon L, Schoebel A, Wagner D, Zaroliagis CD (eds) Algorithmic methods for railway optimization. Lecture notes on computer science, vol 4359. Springer, Berlin, pp 3–40. https://doi.org/10.1007/978-3-540-74247-0_1 (cited on page 289)CrossRefGoogle Scholar
  22. 22.
    Nachtigall K (1998) Periodic network optimization and fixed interval timetables. Habilitation. University of Hildesheim (cited on page 289)Google Scholar
  23. 23.
    Rückert R, Lemnian M, Blendinger C, Rechner S, Müller-Hannemann M (2017) PANDA: a software tool for improved train dispatching with focus on passenger flows. Public Transp 9(1–2):307–324 https://doi.org/10.1007/s12469-016-0140-0 (cited on page 306)
  24. 24.
    Schachtebeck M, Schöbel A (2008) IP-based techniques for delay management with priority decisions. In: Fischetti M, Widmayer P (eds) Proceedings of the 8th workshop on algorithmic approaches for transportation modeling, optimization, and systems (ATMOS 2008). Dagstuhl seminar proceedings. https://doi.org/10.4230/OASIcs.ATMOS.2008.1586 (cited on page 297)
  25. 25.
    Schachtebeck M, Schöbel A (2010) To wait or not to wait-and who goes first? Delay management with priority decisions. Transp Sci 44(3):307–321. https://doi.org/10.1287/trsc.1100.0318 (cited on pages 295, 296, 297, 302, 306, 307)
  26. 26.
    Schmidt M (2013) Simultaneous optimization of delay management decisions and passenger routes. Public Transp 5(1):125–147. https://doi.org/10.1007/s12469-013-0069-5 (cited on pages 304, 310)
  27. 27.
    Schmidt M (2014) Integrating routing decisions in public transportation problems. Optimization and its applications, vol 89. Springer, New York. https://doi.org/10.1007/978-1-4614-9566-6 (cited on page 304)
  28. 28.
    Schöbel A (2001) A model for the delay management problem based on mixed-integer programming. Electron Notes Theor Comput Sci 50(1):1–10. https://doi.org/10.1016/s1571-0661(04)00160-4 (cited on pages 295, 301)
  29. 29.
    Schöbel A (2006) Optimization in public transportation. Stop location, delay management and tariff planning from a customer-oriented point of view. Optimization and its applications. Springer, New York. https://doi.org/10.1007/978-0-387-36643-2 (cited on pages 289, 295)
  30. 30.
    Schöbel A (2007) Integer programming approaches for solving the delay management problem. In: Geraets F, Kroon L, Schöbel A, Wagner D, Zaroliagis CD (eds) Algorithmic methods for railway optimization. Lecture notes in computer science, vol 4359. Springer, Heidelberg, pp 145–170. https://doi.org/10.1007/978-3-540-74247-0_7 (cited on pages 295, 299, 302)
  31. 31.
    Schöbel A (2009) Capacity constraints in delay management. Public Transp 1(2):135–154. https://doi.org/10.1007/s12469-009-0010-0 (cited on pages 293, 297)

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Twan Dollevoet
    • 1
  • Dennis Huisman
    • 1
    • 2
  • Marie Schmidt
    • 3
  • Anita Schöbel
    • 4
  1. 1.Econometric Institute and ECOPTErasmus University RotterdamDR RotterdamThe Netherlands
  2. 2.Netherlands RailwaysProcess quality and InnovationHA UtrechtThe Netherlands
  3. 3.Rotterdam School of ManagementErasmus University RotterdamDR RotterdamThe Netherlands
  4. 4.Institute for Numerical and Applied MathematicsLotzestraße 16-18GöttingenGermany

Personalised recommendations