Skip to main content

Newton’s Gravitational Law for Link Prediction in Social Networks

  • Conference paper
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Abstract

Link prediction is an important research area in network science due to a wide range of real-world application. There are a number of link prediction methods. In the area of social networks, these methods are mostly inspired by social theory, such as having more mutual friends between two people in a social network platform entails higher probability of those two people becoming friends in the future. In this paper we take our inspiration from a different area, which is Newton’s law of universal gravitation. Although this law deals with physical bodies, based on our intuition and empirical results we found that this could also work in networks, and especially in social networks. In order to apply this law, we had to endow nodes with the notion of mass and distance. While node importance could be considered as mass, the shortest path, path count, or inverse similarity (AdamicAdar, Katz score etc.) could be considered as distance. In our analysis, we have primarily used degree centrality to denote the mass of the nodes, while the lengths of shortest paths between them have been used as distances. In this study we compare the proposed link prediction approach to 7 other methods on 4 datasets from various domains. To this end, we use the ROC curves and the AUC measure to compare the methods. As the results show that our approach outperforms the other 7 methods on 2 out of the 4 datasets, we also discuss the potential reasons of the observed behaviour.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230 (2003)

    Article  Google Scholar 

  2. Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P., Jaakkola, T.: Mixed membership stochastic block models for relational data with application to protein-protein interactions. In: Proceedings of the International Biometrics Society Annual Meeting, pp. 1–34 (2006)

    Google Scholar 

  3. Al Hasan, M., Zaki, M.J.: A survey of link prediction in social networks. In: Social Network Data Analytics, pp. 243–275, Springer (2011)

    Google Scholar 

  4. Al Hasan, M., Chaoji, V., Salem, S., Zaki, M.: Link prediction using supervised learning. In: SDM06: Workshop on Link Analysis, Counter-Terrorism and Security (2006)

    Google Scholar 

  5. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. In: Proceedings of the 4th Annual ACM Web Science Conference, ACM, pp. 33–42 (2012)

    Google Scholar 

  6. Barabâsi, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311(3), 590–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barzel, B., Barabási, A.L.: Network link prediction by global silencing of indirect correlations. Nat. Biotechnol. 31(8), 720–725 (2013)

    Article  Google Scholar 

  8. Bliss, C.A., Frank, M.R., Danforth, C.M., Dodds, P.S.: An evolutionary algorithm approach to link prediction in dynamic social networks. J. Comput. Sci. 5(5), 750–764 (2014)

    Article  MathSciNet  Google Scholar 

  9. Brin, S., Page, L.: Reprint of: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. 56(18), 3825–3833 (2012)

    Article  Google Scholar 

  10. Cannistraci, C.V., Alanis-Lobato, G., Ravasi, T.: Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding. Bioinformatics 29(13), i199–i209 (2013)

    Article  Google Scholar 

  11. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility on opportunistic forwarding algorithms. IEEE Trans. Mob. Comput. 6(6) (2007)

    Google Scholar 

  12. Crombie, A.: Newton’s conception of scientific method. Phys. Bull. 8(11), 350 (1957)

    Article  Google Scholar 

  13. Csardi, G., Nepusz, T.: The igraph software package for complex network research. Int. J. Comp. Syst. 1695(5), 1–9 (2006)

    Google Scholar 

  14. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning, ACM, pp. 233–240 (2006)

    Google Scholar 

  15. Edunov, S., Diuk, C., Filiz, I.O., Bhagat, S., Burke, M.: Three and a half degrees of separation. Research at Facebook (2016)

    Google Scholar 

  16. Gerard, S., Michael, J.M.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)

    MATH  Google Scholar 

  17. Hristova, D., Noulas, A., Brown, C., Musolesi, M., Mascolo, C.: A multilayer approach to multiplexity and link prediction in online geo-social networks. EPJ Data Science 5(1), 24 (2016)

    Article  Google Scholar 

  18. Isella, L., Stehlé, J., Barrat, A., Cattuto, C., Pinton, J.F., Van den Broeck, W.: What’s in a crowd? analysis of face-to-face behavioral networks. J. Theor. Biol. 271(1), 166–180 (2011)

    Article  MathSciNet  Google Scholar 

  19. Juszczyszyn, K., Musial, K., Budka, M.: Link prediction based on subgraph evolution in dynamic social networks. In: Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third International Conference on Social Computing (SocialCom), pp. 27–34, IEEE (2011)

    Google Scholar 

  20. Katz, L.: A new status index derived from sociometric analysis. Psychometrika 18(1), 39–43 (1953)

    Article  MATH  Google Scholar 

  21. Krioukov, D., Kitsak, M., Sinkovits, R.S., Rideout, D., Meyer, D., Boguñá, M.: Network cosmology. Scientific reports 2 (2012)

    Google Scholar 

  22. Kunegis, J.: arxiv hep-th network dataset konect (2013). http://konect.uni-koblenz.de/networks/ca-cit-HepTh. Accessed April 2017

  23. Kunegis, J.: Haggle network dataset konect (2013). http://konect.uni-koblenz.de/networks/contact. Accessed April 2017

  24. Kunegis, J.: Hypertext 2009 network dataset konect (2013). http://konect.uni-koblenz.de/networks/contact. Accessed April 2017

  25. Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, ACM, pp. 1343–1350 (2013)

    Google Scholar 

  26. Landherr, A., Friedl, B., Heidemann, J.: A critical review of centrality measures in social networks. Bus. Inf. Syst. Eng. 2(6), 371–385 (2010)

    Article  Google Scholar 

  27. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: Densification and shrinking diameters. ACM Trans. Knowl. Disc. Data (TKDD) 1(1), 2 (2007)

    Article  Google Scholar 

  28. Li, J., Zhang, L., Meng, F., Li, F.: Recommendation algorithm based on link prediction and domain knowledge in retail transactions. Procedia Comput. Sci. 31, 875–881 (2014)

    Article  Google Scholar 

  29. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Assoc. Inform. Sci. Technol. 58(7), 1019–1031 (2007)

    Article  Google Scholar 

  30. Lichtenwalter, R.N., Chawla, N.V.: Lpmade: Link prediction made easy. J. Mach. Learn. Res. 12:2489–2492 (2011)

    Google Scholar 

  31. Lichtenwalter, R.N., Lussier, J.T., Chawla, N.V.: New perspectives and methods in link prediction. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, pp. 243–252 (2010)

    Google Scholar 

  32. Mori, J., Kajikawa, Y., Kashima, H., Sakata, I.: Machine learning approach for finding business partners and building reciprocal relationships. Expert Syst. Appl. 39(12):10402–10407 (2012)

    Google Scholar 

  33. Newman, M.E.: Clustering and preferential attachment in growing networks. Phys. Rev. E 64(2):025–102 (2001)

    Google Scholar 

  34. Newton, I.: Philosophiæ naturalis principia mathematica (mathematical principles of natural philosophy). London (1687) (1987)

    Google Scholar 

  35. Pandey, V.S., Kumar, R., Singh, P.: An optimized all pair shortest paths algorithm. Int. J. Comput. Appl. 2(3), 0975–8887 (2010)

    Google Scholar 

  36. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: Network analysis of an online community. J. Assoc. Inform. Sci. Technol. 60(5), 911–932 (2009)

    Article  Google Scholar 

  37. Papadopoulos, F., Kitsak, M., Serrano, M.Á., Boguñá, M., Krioukov, D.: Popularity versus similarity in growing networks. Nature 489, 537–540 (2012)

    Article  Google Scholar 

  38. Raeder, T., Lizardo, O., Hachen, D., Chawla, N.V.: Predictors of short-term decay of cell phone contacts in a large scale communication network. Soc. Netw. 33(4), 245–257 (2011)

    Article  Google Scholar 

  39. Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C., Müller, M.: Proc: an open-source package for r and s+ to analyze and compare roc curves. BMC bioinformatics 12(1), 77 (2011)

    Article  Google Scholar 

  40. Tan, R., Gu, J., Chen, P., Zhong, Z.: Link prediction using protected location history. In: 2013 Fifth International Conference on Computational and Information Sciences (ICCIS), pp. 795–798. IEEE (2013)

    Google Scholar 

  41. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. J. ACM (JACM) 46(3), 362–394 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. Thorup, M.: Floats, integers, and single source shortest paths. J. Algorithms 35(2), 189–201 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  43. Travers, J., Milgram, S.: The small world problem. Phychology Today. 1, 61–67 (1967)

    Google Scholar 

  44. Wang, P., Xu, B., Wu, Y., Zhou, X.: Link prediction in social networks: the state-of-the-art. Sci. China Inform. Sci. 58(1), 1–38 (2015)

    Google Scholar 

  45. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  46. Wu, S., Sun, J., Tang, J.: Patent partner recommendation in enterprise social networks. In: Proceedings of the sixth ACM International Conference on Web Search and Data Mining, ACM, pp. 43–52 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akanda Wahid -Ul- Ashraf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wahid -Ul- Ashraf, A., Budka, M., Musial-Gabrys, K. (2018). Newton’s Gravitational Law for Link Prediction in Social Networks. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics