Is This Movie a Milestone? Identification of the Most Influential Movies in the History of Cinema

  • Livio BioglioEmail author
  • Ruggero G. Pensa
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 689)


The success of a movie is usually measured through its box-office revenue or the opinion of professional critics, but such measures may be influenced by external factors, such as advertisement or trends, and are not able to capture the impact over time of a film. A more efficient measure should account to what extent a given movie has influenced other movies produced after its release, from both the artistic and the economic point of view. Hence, we propose a ranking method for movies based on the network of citations between them, obtained by combining several centrality indexes. We apply our method on a subset of the IMDb citation network consisting of around 65, 000 international movies, and we derive a list of films that can be considered milestones in the history of cinema. For each movie we also collect its year of release, genres and countries of production, and we analyze such features for finding trends and patterns in the film industry.


Complex networks Network analysis Citation analysis Centrality Cinema 


  1. 1.
    Anderson, S.E., Albertson, S., Shavlik, D.: How the motion picture industry miscalculates box office receipts. Inland Emp. Bus. J. 25(11), 16–24 (2003)Google Scholar
  2. 2.
    Bakker, G.: The economic history of the international film industry. Eh, Net Encyclopedia of Economic History (2005)Google Scholar
  3. 3.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bavelas, A.: Communication patterns in task-oriented groups. J. Acoust. Soc. Am. 22(6), 725–730 (1950)CrossRefGoogle Scholar
  5. 5.
    Bioglio, L., Rho, V., Pensa, R.G.: Measuring the inspiration rate of topics in bibliographic networks. In: Proceedings of DS 2017 (2017, to appear)Google Scholar
  6. 6.
    Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014)CrossRefGoogle Scholar
  7. 7.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. Comput. Netw. and ISDN Syst. 30(1), 107–117 (1998)CrossRefGoogle Scholar
  8. 8.
    Canet, F., Valero, M.Á., Codina, L.: Quantitative approaches for evaluating the influence of films using the imdb database. Comunicación y Soc. 29(2), 151 (2016)Google Scholar
  9. 9.
    Dekker, A.: Conceptual distance in social network analysis. J. Soc. Struct. (JOSS) 6 (2005)Google Scholar
  10. 10.
    Dhar, T., Sun, G., Weinberg, C.B.: The long-term box office performance of sequel movies. Mark. Lett. 23(1), 13–29 (2012)CrossRefGoogle Scholar
  11. 11.
    Elgammal, A., Saleh, B.: Quantifying creativity in art networks. In: Proceedings of the Sixth International Conference on Computational Creativity (ICCC 2015), pp. 39–46. Brigham Young University (2015)Google Scholar
  12. 12.
    Eom, Y.H., Jeon, C., Jeong, H., Kahng, B.: Evolution of weighted scale-free networks in empirical data. Phys. Rev. E 77(5), 056105 (2008)Google Scholar
  13. 13.
    Gallos, L.K., Potiguar, F.Q., Andrade Jr., J.S., Makse, H.A.: Imdb network revisited: unveiling fractal and modular properties from a typical small-world network. PloS One 8(6), e66443 (2013)CrossRefGoogle Scholar
  14. 14.
    Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(04), 565–573 (2003)CrossRefGoogle Scholar
  15. 15.
    Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics, and function using networkx. In: Proceedings of the 7th Python in Science Conference, pp. 11–15 (2008)Google Scholar
  16. 16.
    Hennig-Thurau, T., Wiertz, C., Feldhaus, F.: Does twitter matter? The impact of microblogging word of mouth on consumers’ adoption of new movies. J. Acad. Mark. Sci. 43(3), 375–394 (2015)CrossRefGoogle Scholar
  17. 17.
    Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. U. S. A. 102(46), 16569 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Holbrook, M.B.: The role of ordinary evaluations in the market for popular culture: do consumers have “Good Taste”? Mark. Lett. 16(2), 75–86 (2005)CrossRefGoogle Scholar
  19. 19.
    Kaur, J., Ferrara, E., Menczer, F., Flammini, A., Radicchi, F.: Quality versus quantity in scientific impact. J. Inf. 9(4), 800–808 (2015)CrossRefGoogle Scholar
  20. 20.
    Liu, Y.: Word of mouth for movies: its dynamics and impact on box office revenue. J. Mark. 70(3), 74–89 (2006)CrossRefGoogle Scholar
  21. 21.
    Park, J., Celma, O., Koppenberger, M., Cano, P., Buldú, J.M.: The social network of contemporary popular musicians. Int. J. Bifurc. Chaos 17(07), 2281–2288 (2007)CrossRefzbMATHGoogle Scholar
  22. 22.
    Pautz, M.C.: The decline in average weekly cinema attendance, 1930–2000. Issues Polit. Econ. 11 (2002)Google Scholar
  23. 23.
    Petersen, A.M., Fortunato, S., Pan, R.K., Kaski, K., Penner, O., Rungi, A., Riccaboni, M., Stanley, H.E., Pammolli, F.: Reputation and impact in academic careers. Proc. Natl. Acad. Sci. 111(43), 15316–15321 (2014)CrossRefGoogle Scholar
  24. 24.
    Prag, J., Casavant, J.: An empirical study of the determinants of revenues and marketing expenditures in the motion picture industry. J. Cult. Econ. 18(3), 217–235 (1994)CrossRefGoogle Scholar
  25. 25.
    Renoust, B., Claver, V., Baffier, J.F.: Flows of knowledge in citation networks. In: International Workshop on Complex Networks and their Applications, pp. 159–170. Springer (2016)Google Scholar
  26. 26.
    Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. In: Applications of Social Network Analysis (ASNA 2009) (2009)Google Scholar
  27. 27.
    Sadoul, G.: Histoire du cinéma mondial : Des origines à nos jours. Flammarion (1976)Google Scholar
  28. 28.
    Sinatra, R., Deville, P., Szell, M., Wang, D., Barabási, A.L.: A century of physics. Nat. Phys. 11(10), 791 (2015)CrossRefGoogle Scholar
  29. 29.
    Sinatra, R., Wang, D., Deville, P., Song, C., Barabási, A.L.: Quantifying the evolution of individual scientific impact. Science 354(6312), aaf5239 (2016)Google Scholar
  30. 30.
    Spitz, A., Horvát, E.Á.: Measuring long-term impact based on network centrality: unraveling cinematic citations. PloS One 9(10), e108857 (2014)Google Scholar
  31. 31.
    Wasko, J.: The death of hollywood: exaggeration or reality? In: The Handbook of Political Economy of Communications, pp. 305–330 (2011)Google Scholar
  32. 32.
    Wasserman, M., Zeng, X.H.T., Amaral, L.A.N.: Cross-evaluation of metrics to estimate the significance of creative works. Proc. Natl. Acad. Sci. 112(5), 1281–1286 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zhu, K.: Internet-based distribution of digital videos: the economic impacts of digitization on the motion picture industry. Electron. Mark. 11(4), 273–280 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TurinTurinItaly

Personalised recommendations