Skip to main content

Locality-Based Graph Clustering of Spatially Embedded Time Series

  • Conference paper
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Abstract

The growing amount of sensor data poses significant challenges for rapid and meaningful analysis of large datasets. Across different scientific disciplines, complex networks are used to detect connections between entities of a system. The computation of similarity coefficients for complex network generation and the clustering of the same come at high computational costs. We propose a locality-based approach to analyze spatially embedded objects efficiently and reduce the computational costs of clustering. By exploiting high locality in time series datasets, we heavily reduce the search space and improve the runtime complexity from quadratic to quasi linear. We show the advantages of our approach for global and local clustering on real-world and synthetic datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We also tested other scores, such as \(F_{1}\), Adjusted Mutual Information or Jaccard index, but omit them for clarity as their results are in good agreement with the presented score.

References

  1. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. CRC Press (2013)

    Google Scholar 

  2. Aggarwal, C.C., Wang, H.: Managing and Mining Graph Data. Springer Publishing Company, Incorporated (2010)

    Google Scholar 

  3. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: A survey. Data Min. Knowl. Discov., 626–688 (2015)

    Google Scholar 

  4. Akoglu, L., Tong, H., Meeder, B., Faloutsos, C.: Pics: Parameter-free identification of cohesive subgroups in large attributed graphs. In: SIAM SDM, pp. 439–450 (2012)

    Google Scholar 

  5. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: IEEE FOCS, pp. 475–486 (2006)

    Google Scholar 

  6. Boers, N., Donner, R.V., Bookhagen, B., Kurths, J.: Complex network analysis helps to identify impacts of the el niño southern oscillation on moisture divergence in South America. Clim. Dyn., 619–632 (2015)

    Google Scholar 

  7. Christian, S., Aleksejs, S., Henning, M.: Networkit: An interactive tool suite for high-performance network analysis. CoRR (2014)

    Google Scholar 

  8. Didan, K.: MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC (2015)

    Google Scholar 

  9. Donges, J.F., Zou, Y., Marwan, N., Kurths, J.: Complex networks in climate dynamics. EPJ ST, pp. 157–179 (2009)

    Google Scholar 

  10. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: ACM WWW, pp. 631–640 (2010)

    Google Scholar 

  11. Li, Y., He, K., Bindel, D., Hopcroft, J.E.: Uncovering the small community structure in large networks: a local spectral approach. In: ACM WWW, pp. 658–668 (2015)

    Google Scholar 

  12. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projections of high dimensional data. In: VLDB, pp. 1270–1281 (2009)

    Google Scholar 

  13. Müllner, D.: Modern hierarchical, agglomerative clustering algorithms. arXiv preprint arXiv:1109.2378 (2011)

  14. Perlin, K.: An image synthesizer. In: ACM SIGGRAPH, pp. 287–296 (1985)

    Google Scholar 

  15. Perozzi, B., Akoglu, L., Iglesias Sánchez, P., Müller, E.: Focused clustering and outlier detection in large attributed graphs. In: ACM SIGKDD, pp. 1346–1355 (2014)

    Google Scholar 

  16. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc., 846–850 (1971)

    Google Scholar 

  17. Rheinwalt, A., Boers, N., Marwan, N., Kurths, J., Hoffmann, P., Gerstengarbe, F.W., Werner, P.: Non-linear time series analysis of precipitation events using regional climate networks for germany. Clim. Dyn., 1065–1074 (2016)

    Google Scholar 

  18. Sánchez, P.I., Müller, E., Irmler, O., Böhm, K.: Local context selection for outlier ranking in graphs with multiple numeric node attributes. In: ACM SSDBM, pp. 16:1–16:12 (2014)

    Google Scholar 

  19. Schaeffer, S.E.: Survey: Graph clustering. Comput. Sci. Rev., 27–64 (2007)

    Google Scholar 

  20. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: ACM STOC, pp. 81–90 (2004)

    Google Scholar 

  21. Staudt, C.L., Marrakchi, Y., Meyerhenke, H.: Detecting communities around seed nodes in complex networks. In: IEEE Big Data, pp. 62–69 (2014)

    Google Scholar 

  22. Steinhaeuser, K., Chawla, N.V., Ganguly, A.R.: An exploration of climate data using complex networks. In: ACM SIGKDD Explorations Newsletter pp. 25–32 (2010)

    Google Scholar 

  23. Tobler, W.R.: A computer movie simulating urban growth in the detroit region. Econ. Geogr., 234–240 (1970)

    Google Scholar 

  24. Yang, D., Zhang, D., Zheng, V.W., Yu, Z.: Modeling user activity preference by leveraging user spatial temporal characteristics in lbsns. IEEE Trans. Syst., Man, Cybern., Syst., 129–142 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Geier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maschler, F., Geier, F., Bookhagen, B., Müller, E. (2018). Locality-Based Graph Clustering of Spatially Embedded Time Series. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics