Skip to main content

Network Signatures of Success: Emulating Expert and Crowd Assessment in Science, Art, and Technology

Part of the Studies in Computational Intelligence book series (SCI,volume 689)


The success of scientific, artistic, and technological works is typically judged by human experts and the public. Recent empirical literature suggests that exceptionally creative works might have distinct patterns of citation. Given the recent availability of large citation and reference networks, we investigate how highly successful works differ from less successful ones in terms of a broad selection of centrality indices. Our experiments show that expert opinion is better emulated than popular judgment even with a single well-chosen index. Our findings further provide insights into otherwise implicit assumptions about indicators of success by evaluating the success of works based on the patterns of references that they receive.


  • Crowd Assessment
  • Centrality Indices
  • IMDb Movies
  • Python Package Index (PyPI)
  • Internet Movie Database (IMDb)

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-72150-7_36
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   389.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-72150-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   499.99
Price excludes VAT (USA)
Hardcover Book
USD   499.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.


  1. 1.

  2. 2.

  3. 3.

  4. 4.

  5. 5.

  6. 6.

  7. 7.

  8. 8.

    Authors of scientific papers can reference their forthcoming work or papers in the same volume. Movies can have anomalous references due to delayed release dates and avid marketing strategies in pre-release stage. Developers can freely change dependencies after publishing their packages, sometimes choosing more recent packages.


  1. Bonabeau, E.: Decisions 2.0: the power of collective intelligence. MIT Sloan Manag. Rev. 45–52 (2009)

    Google Scholar 

  2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    CrossRef  MATH  Google Scholar 

  3. Burton, R.E., Kebler, R.W.: The “half-life” of some scientific and technical literatures. Am. Doc. 11(1), 18–22 (1960).

    CrossRef  Google Scholar 

  4. Chen, P., Xie, H., Maslov, S., Redner, S.: Finding scientific gems with google’s pagerank algorithm. J. Inf. 1(1), 8–15 (2007).

    CrossRef  Google Scholar 

  5. Dreber, A., et al.: Using prediction markets to estimate the reproducibility of scientific research. Proc. Natl. Acad. Sci. 112(50), 15343–15347 (2015)

    CrossRef  Google Scholar 

  6. Elberse, A.: Blockbusters: Hit-making, Risk-taking, and the Big Business of Entertainment. Henry Holt and Company, LLC (2013)

    Google Scholar 

  7. Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006).

    CrossRef  MathSciNet  Google Scholar 

  8. Garfield, E.: Citation indexes for science: a new dimension in documentation through association of ideas. Science 122(3159), 108–111 (1955).

    CrossRef  Google Scholar 

  9. Garfield, E.: The history and meaning of the journal impact factor. JAMA 295(1), 90–93 (2006).

    CrossRef  Google Scholar 

  10. Hahn, R., Tetlock, P.C.: Using information markets to improve public decision making. Harv. J. Law Public Policy 29(1), 213–289 (2005)

    Google Scholar 

  11. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Proc. Natl. Acad. Sci. U. S. A. 102(46), 16569–16572 (2005).

    CrossRef  MATH  Google Scholar 

  12. Lehmann, S., Jackson, A.D., Lautrup, B.E.: Measures for measures. Nature 444(7122), 1003–1004 (2006).

    CrossRef  Google Scholar 

  13. Louppe, G., Wehenkel, L., Sutera, A., Geurts, P.: Understanding variable importances in forests of randomized trees. In: Advances in Neural Information Processing Systems, pp. 431–439 (2013)

    Google Scholar 

  14. Monechi, B., Gravino, P., Servedio, V.D.P., Tria, F., Loreto, V.: Significance and popularity in music production. R. Soc. Open Sci. 4(7) (2017).

  15. Mones, E., Pollner, P., Vicsek, T.: Universal hierarchical behavior of citation networks. J. Stat. Mech. Theory Exp. 2014(5), P05023 (2014).

  16. Moore, D.A., et al.: Confidence calibration in a multiyear geopolitical forecasting competition. Manag. Sci. (2016).

  17. Mukherjee, S., Romero, D.M., Jones, B., Uzzi, B.: The nearly universal link between the age of past knowledge and tomorrow’s breakthroughs in science and technology: the hotspot. Sci. Adv. 3(4), e1601315 (2017)

    Google Scholar 

  18. Newman, M.E.: Networks. An introduction. Oxford (2010)

    Google Scholar 

  19. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the web. Tech. rep, Stanford InfoLab (1999)

    Google Scholar 

  20. Price, D.J.D.S.: Networks of scientific papers. Science pp. 510–515 (1965)

    Google Scholar 

  21. Reader, S.M., Morand-Ferron, J., Flynn, E.: Animal and human innovation: novel problems and novel solutions. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 371(1690) (2016).

  22. Rosen, S.: The economics of superstars. Am. Econ. Rev. 71(5), 845–858 (1981)

    Google Scholar 

  23. Salganik, M.J., Dodds, P.S., Watts, D.: Experimental study of inequality and unpredictability in an artificial cultural market. Science 311(10), 854–856 (2006)

    CrossRef  Google Scholar 

  24. Schilling, M.A.: A “small-world” network model of cognitive insight. Creativity Res. J. 17(2–3), 131–154 (2005).

  25. Spitz, A., Horvát, E.Á.: Measuring long-term impact based on network centrality: unraveling cinematic citations. PloS one 9(10), e108857 (2014)

    Google Scholar 

  26. Thelwall, M., Maflahi, N.: When are readership counts as useful as citation counts? Scopus versus Mendeley for LIS journals. J. Assoc. Inf. Sci. Technol. (2014)

    Google Scholar 

  27. Uzzi, B., Mukherjee, S., Stringer, M., Jones, B.: Atypical combinations and scientific impact. Science 342(6157), 468–472 (2013).

    CrossRef  Google Scholar 

  28. Wang, D., Song, C., Barabási, A.L.: Quantifying long-term scientific impact. Science 342(6154), 127–132 (2013).

    CrossRef  Google Scholar 

  29. Wasserman, M., et al.: Correlations between user voting data, budget, and box office for films in the internet movie database. J. Assoc. Inf. Sci. Technol. 66(4), 858–868 (2015).

    CrossRef  Google Scholar 

  30. Wasserman, M., Zeng, X.H.T., Amaral, L.A.N.: Cross-evaluation of metrics to estimate the significance of creative works. Proc. Natl. Acad. Sci. 112(5), 1281–1286 (2015).

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Watts, D.: Everything is Obvious: Once You Know the Answer. Crown Business (2011)

    Google Scholar 

  32. Weitzman, M.: Recombinant growth. Q. J. Econ. 113(2) (1998)

    Google Scholar 

Download references


Authors would like to thank Roberta Sinatra for valuable discussion and data on Nobel prize winners. Special thanks go to Noshir Contractor and SONIC lab members for supporting the preparation of this manuscript.I.Z. has been partially funded through the Russian academic excellence project “5–100”.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Igor Zakhlebin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Zakhlebin, I., Horvát, EÁ. (2018). Network Signatures of Success: Emulating Expert and Crowd Assessment in Science, Art, and Technology. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)