Skip to main content

A Nonlinear Dynamical Approach to the Interpretation of Microblogging Network Complexity

  • Conference paper
  • First Online:
Book cover Complex Networks & Their Applications VI (COMPLEX NETWORKS 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 689))

Included in the following conference series:

Abstract

The present paper is devoted to the research into complexity of microblogging social networks regardless of their internal structure. This approach assumes using the results of nonlinear dynamical analysis of signals generated by the networks. The existence of the main indicators of social network complexity, such as scale invariance, tendency to unexpected and/or extraordinary events, non-equilibrium state and emergent properties, are shown using the example of Twitter. As a result, it is determined that the probability density function for a Twitter time series is a q-exponential (Tsallis) distribution and that the Kaulakys equation is the most adequate nonlinear random dynamical system for modeling of signals in social networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mainzer, K.: Synergetics and complexity: emerging new science and civilization at the turn of the century. In: Complexity and Diversity, pp. 10–29. Springer, Heidelberg (1997)

    Google Scholar 

  2. Price, D.: Networks of scientific papers. Science 149, 510–515 (1965)

    Article  Google Scholar 

  3. Barabasi, A.-L., Réka, A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Tadic, B., Mitrovic Dankulov, M., Melnikc, R.: Mechanisms of self-organized criticality in social processes of knowledge creation. Phys. Rev. E 96, 032307 (2017)

    Article  Google Scholar 

  6. Tadic, B., Gligorijevic, V., Mitrovic, M., Suvakov, M.: Co-evolutionary mechanisms of emotional bursts in online social dynamics and networks. Entropy 15, 5084–5120 (2013)

    Article  MATH  Google Scholar 

  7. Butts, C.T.: The complexity of social networks: theoretical and empirical findings. Soc. Netw. 23, 31–72 (2001)

    Article  Google Scholar 

  8. Skvoretz, J.: Complexity theory and models for social networks. Complexity 8, 47–55 (2003)

    Article  MathSciNet  Google Scholar 

  9. Everett, M.G.: Role similarity and complexity in social networks. Soc. Netw. 7, 353–359 (1985)

    Article  MathSciNet  Google Scholar 

  10. Ebel, H., Davidsen, J., Bornholdt, S.: Dynamics of social networks. Complexity 8, 24–27 (2002)

    Article  MathSciNet  Google Scholar 

  11. Bocaletti, S., Latora, V., Moreno, Y., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dmitriev, A.V., Tsukanova, O.A., Maltseva, S.V. Investigation into the regular and chaotic states of microblogging networks as applied to social media monitoring. In: 13th IEEE International Conference on e-Business Engineering, pp. 293–298. IEEE Press (2016)

    Google Scholar 

  13. Prigogine, I., Lefever, R.: Theory of dissipative structure. In: Synergetics, pp. 124–135. Springer, Heidelberg (1973)

    Google Scholar 

  14. Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York (2000)

    Google Scholar 

  15. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f-noise. Phys. Rev. Lett. 59, 381–384 (1987)

    Article  Google Scholar 

  16. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bak, P.: How Nature Works: The Science of Self-organized Criticality. Springer, New York (1996)

    Google Scholar 

  18. Mandelbrot, B.B.: Fractals and Chaos. Springer, New York (2004)

    Google Scholar 

  19. Grassberger, P., Procaccia, I.: Measuring the trangeness of strange attractors. Phys. D 9, 189–208 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ding, M., Grebogi, C., Ott, E., Sauer, T., Yorke, J.: Estimating correlation dimension from a chaotic time series: when does plateau onset occur? Phys. D 69, 404–424 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dubovikov, M.M., Starchenko, N.S., Dubovikov, M.S.: Dimension of the minimal cover and fractal analysis of time series. Phys. A 339, 591–608 (2004)

    Article  MathSciNet  Google Scholar 

  22. Mandelbrot, B.B., Ness, V.: Fractional brownian motions, fractional noises and aplica-tions. SIAM Rev. 10, 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  23. Cambel, A.B.: Applied Chaos Theory: A Paradigm for Complexity. Academic Press, New York (1993)

    Google Scholar 

  24. Peters, E.E.: Chaos and Order in the Capital Markets. Willey, New York (1996)

    Google Scholar 

  25. Tsallis, C.: What are the numbers that experiments provide? Quim. Nova 17, 68–471 (1994)

    Google Scholar 

  26. Tsallis, C.: Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 39, 337–356 (2009)

    Article  Google Scholar 

  27. Picoli, S., Mendes, R.S., Malacarne, L.C., Santos, R.P.B.: q-distributions in complex systems: a brief review. Braz. J. Phys. 39, 468–474 (2009)

    Article  Google Scholar 

  28. Zhang, F., Shi, Y., Ng, H., Wang, R.: Tsallis statistics in reliability analysis: theory and methods. Eur. Phys. J. Plus 131, 379 (2016)

    Article  Google Scholar 

  29. Kuznetsov, N.V., Leonov, G.A.: On stability by the first approximation for discrete systems. In: Proceedings of the International Conference on Physics and Control, pp. 596–599 (2005)

    Google Scholar 

  30. Arnold, L.: Random Dynamical Systems. Springer, Heidelberg (1998)

    Google Scholar 

  31. Kaulakys, B., Meskauskas, T.: Modeling 1/f noise. Phys. Rev. E 58, 7013–7019 (1998)

    Article  Google Scholar 

  32. Ruseckas, J., Gontis, V., Kaulakys, B.: Nonextensive statistical mechanics distributions and dynamics of financial observables from the nonlinear stochastic differential equations. Adv. Complex Syst. 15, 1250073 (2012)

    Article  MathSciNet  Google Scholar 

  33. Ruseckas, J., Kaulakys, B.: Tsallis distributions and 1/f noise from nonlinear stochastic differential equations. Phys. Rev. E 84, 0511125 (2011)

    Article  Google Scholar 

  34. Kaulakys, B., Alaburda, M., Gontis, V., Ruseckas, J.: Modeling long-memory processes by stochastic difference equations and superstatistical approach. Braz. J. Phys. 39, 453–456 (2009)

    Article  Google Scholar 

  35. Kaulakys, B., Alaburda, M.: Modeling scaled processes and 1/f noise using nonlinear stochastic differential equations. J. Stat. Mech. Theor. Exper. P02051 (2009)

    Google Scholar 

  36. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tsukanova, O.A., Vishnyakova, E.P., Maltseva, S.V.: Model-based monitoring and analysis of the network community dynamics in a textured state space. In: 16th IEEE Conference on Business Informatics. pp. 44–49. IEEE Press (2014)

    Google Scholar 

  38. Loskutov, A.Y.: Dynamical chaos: systems of classical mechanics. Phys. Uspekhi 177, 989–1015 (2007)

    Google Scholar 

  39. Loskutov, A.Y.: Fascination of chaos. Phys. Uspekhi 180, 1305–1329 (2010)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Russian Foundation for Basic Research (grant 16-07-01027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey Dmitriev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dmitriev, A., Dmitriev, V., Tsukanova, O., Maltseva, S. (2018). A Nonlinear Dynamical Approach to the Interpretation of Microblogging Network Complexity. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics