A Nonlinear Dynamical Approach to the Interpretation of Microblogging Network Complexity

  • Andrey DmitrievEmail author
  • Victor Dmitriev
  • Olga Tsukanova
  • Svetlana Maltseva
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 689)


The present paper is devoted to the research into complexity of microblogging social networks regardless of their internal structure. This approach assumes using the results of nonlinear dynamical analysis of signals generated by the networks. The existence of the main indicators of social network complexity, such as scale invariance, tendency to unexpected and/or extraordinary events, non-equilibrium state and emergent properties, are shown using the example of Twitter. As a result, it is determined that the probability density function for a Twitter time series is a q-exponential (Tsallis) distribution and that the Kaulakys equation is the most adequate nonlinear random dynamical system for modeling of signals in social networks.



The work was supported by the Russian Foundation for Basic Research (grant 16-07-01027).


  1. 1.
    Mainzer, K.: Synergetics and complexity: emerging new science and civilization at the turn of the century. In: Complexity and Diversity, pp. 10–29. Springer, Heidelberg (1997)Google Scholar
  2. 2.
    Price, D.: Networks of scientific papers. Science 149, 510–515 (1965)CrossRefGoogle Scholar
  3. 3.
    Barabasi, A.-L., Réka, A.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Albert, R., Barabasi, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Tadic, B., Mitrovic Dankulov, M., Melnikc, R.: Mechanisms of self-organized criticality in social processes of knowledge creation. Phys. Rev. E 96, 032307 (2017)CrossRefGoogle Scholar
  6. 6.
    Tadic, B., Gligorijevic, V., Mitrovic, M., Suvakov, M.: Co-evolutionary mechanisms of emotional bursts in online social dynamics and networks. Entropy 15, 5084–5120 (2013)CrossRefzbMATHGoogle Scholar
  7. 7.
    Butts, C.T.: The complexity of social networks: theoretical and empirical findings. Soc. Netw. 23, 31–72 (2001)CrossRefGoogle Scholar
  8. 8.
    Skvoretz, J.: Complexity theory and models for social networks. Complexity 8, 47–55 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Everett, M.G.: Role similarity and complexity in social networks. Soc. Netw. 7, 353–359 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Ebel, H., Davidsen, J., Bornholdt, S.: Dynamics of social networks. Complexity 8, 24–27 (2002)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Bocaletti, S., Latora, V., Moreno, Y., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dmitriev, A.V., Tsukanova, O.A., Maltseva, S.V. Investigation into the regular and chaotic states of microblogging networks as applied to social media monitoring. In: 13th IEEE International Conference on e-Business Engineering, pp. 293–298. IEEE Press (2016)Google Scholar
  13. 13.
    Prigogine, I., Lefever, R.: Theory of dissipative structure. In: Synergetics, pp. 124–135. Springer, Heidelberg (1973)Google Scholar
  14. 14.
    Hilborn, R.C.: Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, New York (2000)Google Scholar
  15. 15.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of 1/f-noise. Phys. Rev. Lett. 59, 381–384 (1987)CrossRefGoogle Scholar
  16. 16.
    Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality. Phys. Rev. A 38, 364–374 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Bak, P.: How Nature Works: The Science of Self-organized Criticality. Springer, New York (1996)Google Scholar
  18. 18.
    Mandelbrot, B.B.: Fractals and Chaos. Springer, New York (2004)Google Scholar
  19. 19.
    Grassberger, P., Procaccia, I.: Measuring the trangeness of strange attractors. Phys. D 9, 189–208 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ding, M., Grebogi, C., Ott, E., Sauer, T., Yorke, J.: Estimating correlation dimension from a chaotic time series: when does plateau onset occur? Phys. D 69, 404–424 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Dubovikov, M.M., Starchenko, N.S., Dubovikov, M.S.: Dimension of the minimal cover and fractal analysis of time series. Phys. A 339, 591–608 (2004)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Mandelbrot, B.B., Ness, V.: Fractional brownian motions, fractional noises and aplica-tions. SIAM Rev. 10, 422–437 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cambel, A.B.: Applied Chaos Theory: A Paradigm for Complexity. Academic Press, New York (1993)Google Scholar
  24. 24.
    Peters, E.E.: Chaos and Order in the Capital Markets. Willey, New York (1996)Google Scholar
  25. 25.
    Tsallis, C.: What are the numbers that experiments provide? Quim. Nova 17, 68–471 (1994)Google Scholar
  26. 26.
    Tsallis, C.: Nonadditive entropy and nonextensive statistical mechanics-an overview after 20 years. Braz. J. Phys. 39, 337–356 (2009)CrossRefGoogle Scholar
  27. 27.
    Picoli, S., Mendes, R.S., Malacarne, L.C., Santos, R.P.B.: q-distributions in complex systems: a brief review. Braz. J. Phys. 39, 468–474 (2009)CrossRefGoogle Scholar
  28. 28.
    Zhang, F., Shi, Y., Ng, H., Wang, R.: Tsallis statistics in reliability analysis: theory and methods. Eur. Phys. J. Plus 131, 379 (2016)CrossRefGoogle Scholar
  29. 29.
    Kuznetsov, N.V., Leonov, G.A.: On stability by the first approximation for discrete systems. In: Proceedings of the International Conference on Physics and Control, pp. 596–599 (2005)Google Scholar
  30. 30.
    Arnold, L.: Random Dynamical Systems. Springer, Heidelberg (1998)Google Scholar
  31. 31.
    Kaulakys, B., Meskauskas, T.: Modeling 1/f noise. Phys. Rev. E 58, 7013–7019 (1998)CrossRefGoogle Scholar
  32. 32.
    Ruseckas, J., Gontis, V., Kaulakys, B.: Nonextensive statistical mechanics distributions and dynamics of financial observables from the nonlinear stochastic differential equations. Adv. Complex Syst. 15, 1250073 (2012)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Ruseckas, J., Kaulakys, B.: Tsallis distributions and 1/f noise from nonlinear stochastic differential equations. Phys. Rev. E 84, 0511125 (2011)CrossRefGoogle Scholar
  34. 34.
    Kaulakys, B., Alaburda, M., Gontis, V., Ruseckas, J.: Modeling long-memory processes by stochastic difference equations and superstatistical approach. Braz. J. Phys. 39, 453–456 (2009)CrossRefGoogle Scholar
  35. 35.
    Kaulakys, B., Alaburda, M.: Modeling scaled processes and 1/f noise using nonlinear stochastic differential equations. J. Stat. Mech. Theor. Exper. P02051 (2009)Google Scholar
  36. 36.
    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tsukanova, O.A., Vishnyakova, E.P., Maltseva, S.V.: Model-based monitoring and analysis of the network community dynamics in a textured state space. In: 16th IEEE Conference on Business Informatics. pp. 44–49. IEEE Press (2014)Google Scholar
  38. 38.
    Loskutov, A.Y.: Dynamical chaos: systems of classical mechanics. Phys. Uspekhi 177, 989–1015 (2007)Google Scholar
  39. 39.
    Loskutov, A.Y.: Fascination of chaos. Phys. Uspekhi 180, 1305–1329 (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Andrey Dmitriev
    • 1
    Email author
  • Victor Dmitriev
    • 1
  • Olga Tsukanova
    • 1
  • Svetlana Maltseva
    • 1
  1. 1.National Research University Higher School of EconomicsMoscowRussia

Personalised recommendations