Skip to main content

Ranking in Dynamic Graphs Using Exponential Centrality

  • 4711 Accesses

Part of the Studies in Computational Intelligence book series (SCI,volume 689)

Abstract

Many large datasets from several fields of research such as biology or society can be represented as graphs. Additionally in many real applications, data is constantly being produced, leading to the notion of dynamic graphs. A heavily studied problem is identification of the most important vertices in a graph. This can be done using centrality measures, where a centrality metric computes a numerical value for each vertex in the graph. In this work we focus on centrality scores obtained from the computation of the matrix exponential. Specifically, we present a new dynamic algorithm for updating exponential centrality-based values of vertices in evolving graphs. We show that our method is faster than pure static recomputation, obtaining about 16\(\times \) speedup in real-world networks while maintaining a high quality of recall of the top ranked vertices in graphs. Moreover, we do not see a deterioration of the quality of our algorithm over time as more data is inserted into the graph.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. Alsayed, A., Higham, D.J.: Betweenness in time dependent networks. Chaos, Solitons & Fractals 72, 35–48 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Bauer, F., Lizier, J.T.: Identifying influential spreaders and efficiently estimating infection numbers in epidemic models: a walk counting approach. EPL Europhysics Lett. 99(6), 68007 (2012)

    Google Scholar 

  4. Benzi, M., Estrada, E., Klymko, C.: Ranking hubs and authorities using matrix functions. Linear Algebra Appl. 438(5), 2447–2474 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Benzi, M., Klymko, C.: Total communicability as a centrality measure. J. Complex Netw. 1(2), 124–149 (2013)

    CrossRef  Google Scholar 

  6. Bonacich, P.: Power and centrality: a family of measures. Am. J. Sociol. 92(5), 1170–1182 (1987)

    CrossRef  Google Scholar 

  7. Bonacich, P.: Some unique properties of eigenvector centrality. Soc. Netw. 29(4), 555–564 (2007)

    CrossRef  Google Scholar 

  8. Braha, D., Bar-Yam, Y.: From centrality to temporary fame: dynamic centrality in complex networks. Complexity 12(2), 59–63 (2006)

    CrossRef  Google Scholar 

  9. Estrada, E.: The structure of complex networks: theory and applications. Oxford University Press (2012)

    Google Scholar 

  10. Estrada, E., Higham, D.J.: Network properties revealed through matrix functions. SIAM Rev. 52(4), 696–714 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  11. Estrada, E., Rodriguez-Velazquez, J.A.: Subgraph centrality in complex networks. Phys. Rev. E 71(5), 056103 (2005)

    Google Scholar 

  12. Gleich, D.F.: Pagerank beyond the web. SIAM Rev. 57(3), 321–363 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Grindrod, P., Higham, D.J.: A matrix iteration for dynamic network summaries. SIAM Rev. 55(1), 118–128 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Higham, N.J.: Functions of matrices: theory and computation. SIAM (2008)

    Google Scholar 

  15. Kendall, M.G.: A new measure of rank correlation. Biometrika 30(1/2), 81–93 (1938)

    CrossRef  MATH  Google Scholar 

  16. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. Kunegis, J.: Konect: the koblenz network collection. In: Proceedings of the 22nd International Conference on World Wide Web, pp. 1343–1350. ACM (2013)

    Google Scholar 

  18. Langville, A.N., Meyer, C.D.: Updating pagerank with iterative aggregation. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers and Posters, pp. 392–393. ACM (2004)

    Google Scholar 

  19. Langville, A.N., Meyer, C.D.: A survey of eigenvector methods for web information retrieval. SIAM Rev. 47(1), 135–161 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. Langville, A.N., Meyer, C.D.: Who’s# 1?: The Science of Rating and Ranking. Princeton University Press (2012)

    Google Scholar 

  21. Meyer, C.D.: Stochastic complementation, uncoupling markov chains, and the theory of nearly reducible systems. SIAM Rev. 31(2), 240–272 (1989)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. Newman, M.: Networks: An Introduction. Oxford University Press (2010)

    Google Scholar 

  24. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web (1999)

    Google Scholar 

  26. Pan, R.K., Saramäki, J.: Path lengths, correlations, and centrality in temporal networks. Phys. Rev. E 84(1), 016105 (2011)

    Google Scholar 

  27. Stewart, W.J.: Introduction to the Numerical Solutions of Markov Chains. Princeton University Press, Princeto (1994)

    MATH  Google Scholar 

  28. Taylor, D., Myers, S.A., Clauset, A., Porter, M.A., Mucha, P.J.: Eigenvector-based centrality measures for temporal networks. Multiscale Modeling Simul. 15(1), 537–574 (2017)

    CrossRef  MathSciNet  MATH  Google Scholar 

  29. Trotter, H.F.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10(4), 545–551 (1959)

    CrossRef  MathSciNet  MATH  Google Scholar 

  30. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-worldnetworks. Nature 393(6684), 440–442 (1998)

    CrossRef  MATH  Google Scholar 

Download references

Acknowledgments

Eisha Nathan is in part supported by the National Physical Science Consortium Graduate Fellowship. The work depicted in this paper was sponsored in part by the National Science Foundation under award #1339745. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect those of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eisha Nathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nathan, E., Fairbanks, J., Bader, D. (2018). Ranking in Dynamic Graphs Using Exponential Centrality. In: Cherifi, C., Cherifi, H., Karsai, M., Musolesi, M. (eds) Complex Networks & Their Applications VI. COMPLEX NETWORKS 2017. Studies in Computational Intelligence, vol 689. Springer, Cham. https://doi.org/10.1007/978-3-319-72150-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72150-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72149-1

  • Online ISBN: 978-3-319-72150-7

  • eBook Packages: EngineeringEngineering (R0)