Advertisement

Fluid Communities: A Competitive, Scalable and Diverse Community Detection Algorithm

  • Ferran ParésEmail author
  • Dario Garcia GasullaEmail author
  • Armand Vilalta
  • Jonatan Moreno
  • Eduard Ayguadé
  • Jesús Labarta
  • Ulises Cortés
  • Toyotaro Suzumura
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 689)

Abstract

We introduce a community detection algorithm (Fluid Communities) based on the idea of fluids interacting in an environment, expanding and contracting as a result of that interaction. Fluid Communities is based on the propagation methodology, which represents the state-of-the-art in terms of computational cost and scalability. While being highly efficient, Fluid Communities is able to find communities in synthetic graphs with an accuracy close to the current best alternatives. Additionally, Fluid Communities is the first propagation-based algorithm capable of identifying a variable number of communities in network. To illustrate the relevance of the algorithm, we evaluate the diversity of the communities found by Fluid Communities, and find them to be significantly different from the ones found by alternative methods.

Notes

Acknowledgements

This work is partially supported by the Joint Study Agreement no. W156463 under the IBM/BSC Deep Learning Center agreement, by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology through TIN2015-65316-P project and by the Generalitat de Catalunya (contracts 2014-SGR-1051), and by the Japan JST-CREST program.

References

  1. 1.
    Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)Google Scholar
  2. 2.
    Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)Google Scholar
  3. 3.
    Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Girvan, M., Newman, M.E.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 056117 (2009)Google Scholar
  6. 6.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Phys. Rev. E 78(4), 046110 (2008)Google Scholar
  7. 7.
    Meusel, R., Vigna, S., Lehmberg, O., Bizer, C.: Graph structure in the web—revisited: a trick of the heavy tail. In: Proceedings of the 23rd international conference on World Wide Web, pp. 427–432 ACM (2014)Google Scholar
  8. 8.
    Newman, M.E.: Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E 74(3), 036104 (2006)Google Scholar
  9. 9.
    Newman, M.E., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)Google Scholar
  10. 10.
    Pons, P., Latapy, M.: Computing communities in large networks using random walks. In: International Symposium on Computer and Information Sciences, pp. 284–293. Springer (2005)Google Scholar
  11. 11.
    Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)Google Scholar
  12. 12.
    Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74(1), 016110 (2006)Google Scholar
  13. 13.
    Ronhovde, P., Nussinov, Z.: Multiresolution community detection for megascale networks by information-based replica correlations. Phys. Rev. E 80(1), 016109 (2009)Google Scholar
  14. 14.
    Rosvall, M., Axelsson, D., Bergstrom, C.T.: The map equation. Eur. Phys. J. Spec. Top. 178(1), 13–23 (2009)CrossRefGoogle Scholar
  15. 15.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. 105(4), 1118–1123 (2008)CrossRefGoogle Scholar
  16. 16.
    Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6 (2016)Google Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Ferran Parés
    • 1
    Email author
  • Dario Garcia Gasulla
    • 1
    Email author
  • Armand Vilalta
    • 1
  • Jonatan Moreno
    • 1
  • Eduard Ayguadé
    • 2
  • Jesús Labarta
    • 2
  • Ulises Cortés
    • 2
  • Toyotaro Suzumura
    • 3
  1. 1.Barcelona Supercomputing Center (BSC)BarcelonaSpain
  2. 2.Barcelona Supercomputing Center (BSC) & UPC - BarcelonaTECHBarcelonaSpain
  3. 3.Barcelona Supercomputing Center (BSC) & IBM T.J. WatsonNew York CityUSA

Personalised recommendations