Dynamic Generative Model of the Human Brain in Resting-State

  • Dali Guo
  • Viplove Arora
  • Enrico Amico
  • Joaquín Goñi
  • Mario Ventresca
Conference paper
Part of the Studies in Computational Intelligence book series (SCI, volume 689)


The human connectome is constructed by translating neuron activities into a complex network with nodes and edges. Although the topology of such networks is well studied, the formation rules and dynamics are not fully understood. It is challenging to develop a generative model for large scale dynamic complex networks due to the computational obstacle and nontrivial network structure. To study the node-based and subject-based network dynamics in resting-state brain, we divide the brain scan session into several sliding windows and generate a network for each segment. Then, an action-based model generator, which generates edges according to a topology manipulating actions, is fitted to the network series. This model, presumably as the first applicable approach for synthesizing the brain network dynamics, is shown capable of synthesizing a network series of the action-based model. Also, the estimated parameters shows that the actions of brain regions are related to their functionality.


  1. 1.
    Achard, S., Salvador, R., Whitcher, B., Suckling, J., Bullmore, E.D.: A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J. Neurosci. 26(1), 63–72 (2006)CrossRefGoogle Scholar
  2. 2.
    Alexander-Bloch, A., Lambiotte, R., Roberts, B., Giedd, J., Gogtay, N., Bullmore, E.: The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia. Neuroimage 59(4), 3889–3900 (2012)CrossRefGoogle Scholar
  3. 3.
    Amico, E., Goñi, J.: Maximizing the individual fingerprints of human functional connectomes through decomposition into brain connectivity modes. arXiv preprint arXiv:1707.02365 (2017)
  4. 4.
    Arora, V., Ventresca, M.: Action-based modeling of complex networks. Sci. Rep. 7 (2017)Google Scholar
  5. 5.
    Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T.: Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. U.S.A. 108, 7641–7646 (2010)CrossRefGoogle Scholar
  6. 6.
    Betzel, R.F., Avena-Koenigsberger, A., Goñi, J., He, Y., de Reus, M.A., Griffa, A., Vértes, P.E., Mišic, B., Thiran, J.P., Hagmann, P., van den Heuvel, M., Zuo, X.N., Bullmore, E.T., Sporns, O.: Generative models of the human connectome. NeuroImage 124, 1054–1064. (2016)
  7. 7.
    Feinberg, D.A., Moeller, S., Smith, S.M., Auerbach, E., Ramanna, S., Glasser, M.F., Miller, K.L., Ugurbil, K., Yacoub, E.: Multiplexed echo planar imaging for sub-second whole brain FMRI and fast diffusion imaging. PloS one 5(12), e15,710 (2010)Google Scholar
  8. 8.
    Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D.H., Busa, E., Seidman, L.J., Goldstein, J., Kennedy, D.: Others: Automatically parcellating the human cerebral cortex. Cereb. Cortex 14(1), 11–22 (2004)CrossRefGoogle Scholar
  9. 9.
    Glasser, M.F., Coalson, T.S., Robinson, E.C., Hacker, C.D., Harwell, J., Yacoub, E., Ugurbil, K., Andersson, J., Beckmann, C.F., Jenkinson, M.: Others: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)CrossRefGoogle Scholar
  10. 10.
    Glasser, M.F., Sotiropoulos, S.N., Wilson, J.A., Coalson, T.S., Fischl, B., Andersson, J.L., Xu, J., Jbabdi, S., Webster, M., Polimeni, J.R.: Others: The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage 80, 105–124 (2013)CrossRefGoogle Scholar
  11. 11.
    Guo, F., Hanneke, S., Fu, W., Xing, E.P.: Recovering temporally rewiring networks: A model-based approach. In: Proceedings of the 24th International Conference on Machine Learning, pp. 321–328. ACM (2007)Google Scholar
  12. 12.
    Hajnal, J.V., Myers, R., Oatridge, A., Schwieso, J.E., Young, I.R., Bydder, G.M.: Artifacts due to stimulus correlated motion in functional imaging of the brain. Magn. Reson. Med. 31(3), 283–291 (1994)CrossRefGoogle Scholar
  13. 13.
    Henson, R.N.A., Buechel, C., Josephs, O., Friston, K.J.: The slice-timing problem in event-related fMRI. NeuroImage 9, 125 (1999)Google Scholar
  14. 14.
    Holden, M.: A review of geometric transformations for nonrigid body registration. IEEE Trans. Med. Imaging 27(1), 111–128 (2008)CrossRefGoogle Scholar
  15. 15.
    Jenkinson, M., Bannister, P., Brady, M., Smith, S.: Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage 17(2), 825–841 (2002)CrossRefGoogle Scholar
  16. 16.
    Jung, T.P., Makeig, S., McKeown, M.J., Bell, A.J., Lee, T.W., Sejnowski, T.J.: Imaging brain dynamics using independent component analysis. Proc. IEEE 89(7), 1107–1122 (2001)CrossRefGoogle Scholar
  17. 17.
    Leonardi, N., Richiardi, J., Gschwind, M., Simioni, S., Annoni, J.M., Schluep, M., Vuilleumier, P., Van De Ville, D.: Principal components of functional connectivity: A new approach to study dynamic brain connectivity during rest. NeuroImage 83, 937–950. (2013)
  18. 18.
    Logothetis, N.K., Pauls, J., Augath, M., Trinath, T., Oeltermann, A.: Neurophysiological investigation of the basis of the fMRI signal. Nature 412(6843), 150 (2001)CrossRefGoogle Scholar
  19. 19.
    Micheloyannis, S., Pachou, E., Stam, C.J., Breakspear, M., Bitsios, P., Vourkas, M., Erimaki, S., Zervakis, M.: Small-world networks and disturbed functional connectivity in schizophrenia. Schizophr. Res. 87(1), 60–66 (2006)CrossRefGoogle Scholar
  20. 20.
    Moeller, S., Yacoub, E., Olman, C.A., Auerbach, E., Strupp, J., Harel, N., Ugurbil, K.: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI. Magn. Reson. Med. 63(5), 1144–1153 (2010)CrossRefGoogle Scholar
  21. 21.
    Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)CrossRefGoogle Scholar
  22. 22.
    Nieto-Castanon, A., Ghosh, S.S., Tourville, J.A., Guenther, F.H.: Region of interest based analysis of functional imaging data. Neuroimage 19(4), 1303–1316 (2003)CrossRefGoogle Scholar
  23. 23.
    Poldrack, R.A.: Region of interest analysis for fMRI. Soc. Cogn. Affect. Neurosci. 2(1), 67–70 (2007)CrossRefGoogle Scholar
  24. 24.
    Power, J.D., Mitra, A., Laumann, T.O., Snyder, A.Z., Schlaggar, B.L., Petersen, S.E.: Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage 84, 320–341 (2014)CrossRefGoogle Scholar
  25. 25.
    Rubinov, M., Sporns, O.: Complex network measures of brain connectivity: Uses and interpretations. NeuroImage 52(3), 1059–1069. (2010)
  26. 26.
    Rubinov, M., Ypma, R.J.F., Watson, C., Bullmore, E.T.: Wiring cost and topological participation of the mouse brain connectome. Proc. Natl. Acad. Sci. 112(32), 10032–10037 (2015)CrossRefGoogle Scholar
  27. 27.
    Serrano, M.Á., Boguná, M., Vespignani, A.: Extracting the multiscale backbone of complex weighted networks. Proc. Natl. Acad. Sci. 106(16), 6483–6488 (2009)CrossRefGoogle Scholar
  28. 28.
    Setsompop, K., Gagoski, B.A., Polimeni, J.R., Witzel, T., Wedeen, V.J., Wald, L.L.: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med. 67(5), 1210–1224 (2012)CrossRefGoogle Scholar
  29. 29.
    Simpson, S.L., Hayasaka, S., Laurienti, P.J.: Exponential random graph modeling for complex brain networks. PLoS ONE 6(5). (2011)
  30. 30.
    Smith, S.M., Miller, K.L., Salimi-Khorshidi, G., Webster, M., Beckmann, C.F., Nichols, T.E., Ramsey, J.D., Woolrich, M.W.: Network modelling methods for FMRI. Neuroimage 54(2), 875–891 (2011)CrossRefGoogle Scholar
  31. 31.
    Sporns, O., Tononi, G., Edelman, G.M.: Connectivity and complexity: the relationship between neuroanatomy and brain dynamics. Neural Networks 13(8), 909–922 (2000)CrossRefGoogle Scholar
  32. 32.
    Tononi, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. 91(11), 5033–5037 (1994)CrossRefGoogle Scholar
  33. 33.
    Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E.J., Yacoub, E., Ugurbil, K., Consortium, W.M.H.C.P.: Others: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRefGoogle Scholar
  34. 34.
    Vértes, P.E., Alexander-Bloch, A.F., Gogtay, N., Giedd, J.N., Rapoport, J.L., Bullmore, E.T.: Simple models of human brain functional networks. Proc. Natl. Acad. Sci. 109(15), 5868–5873 (2012)CrossRefGoogle Scholar
  35. 35.
    Xu, J., Moeller, S., Strupp, J., Auerbach, E.J., Chen, L., Feinberg, D.A., Ugurbil, K., Yacoub, E.: Highly accelerated whole brain imaging using aligned-blipped-controlled-aliasing multiband EPI. In: Proceedings of the 20th Annual Meeting of ISMRM, vol. 2306 (2012)Google Scholar
  36. 36.
    Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R.: Others: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Dali Guo
    • 1
  • Viplove Arora
    • 1
  • Enrico Amico
    • 1
  • Joaquín Goñi
    • 1
  • Mario Ventresca
    • 1
  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations