Skip to main content

Thermodynamic Properties of Magnetic Semiconductors Ag2FeSn3S8 and Ag2FeSnS4 Determined by the EMF Method

  • Conference paper
  • First Online:
Materials Processing Fundamentals 2018 (TMS 2018)

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

Included in the following conference series:

Abstract

Phase equilibria and thermodynamics in the Ag2SnS3–SnS–Sn2S3–FeS system were investigated using differential thermal analysis, X-ray diffraction, and EMF methods. Determined phase relations were used to express the forming chemical reactions for compounds Ag2FeSn3S8 and Ag2FeSnS4. The forming chemical reactions were performed by applying electrochemical cells of the types: (–) C | Ag | Ag3GeS3I glass | Ag2FeSn3S8, SnS, Sn2S3, FeS | C (+) and (–) C | Ag | Ag3GeS3I glass | Ag2FeSnS4, SnS, Ag2FeSn3S8, FeS | C (+). Based on the measured EMF versus temperature relations, experimental thermodynamic data of the quaternary phases Ag2FeSn3S8 and Ag2FeSnS4 were derived for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parthé E, Yvon K, Deitch RH (1969) The crystal structure of Cu2CdGeS4 and other quaternary normal tetrahedral structure compounds. Acta Crystallogr B 25:1164–1174

    Article  Google Scholar 

  2. Schäfer W, Nitsche R (1974) Tetrahedral quaternary chalcogenides of the type Cu2-II-IV-S4(Se4). Mater Res Bull 9:645–654

    Article  Google Scholar 

  3. Lamarche G, Woolley JC, Tovar R, Quintero M, Sagredo V (1989) Effects of crystallographic ordering on the magnetic behaviour of (AgIn)1-zMn2zTe2 and (CuIn)1-zMn2zTe2 alloys. J Magn Magn Mater 80:321–328

    Article  Google Scholar 

  4. Lamarche A-M, Willsher A, Chen L, Lamarche G, Woolley JC (1991) Crystal structures of I2·Mn·IV·VI4 compounds. J Solid State Chem 94:313–318

    Article  Google Scholar 

  5. Chen XL, Lamarche A-M, Lamarche G, Woolley JC (1993) Magnetic behaviour of some I2·Mn·IV·VI4 compounds. J Magn Magn Mater 118:119–128

    Article  Google Scholar 

  6. Chen XL, Lamarche A-M, Lamarche G, Woolley JC (1993) Effects of magnetic transitions on the optical energy gap values of some I2.Mn.IV.VI4 phases. J Phys Condens Matter 5:7143–7154

    Article  Google Scholar 

  7. Woolley JC, Lamarche A-M, Lamarche G, Church C, Swainson IP, Holden TM (1995) Crystal symmetry of Ag2MnGeTe4 phases. J Solid State Chem 115:192–196

    Article  Google Scholar 

  8. Marking GA, Hanko JA, Kanatzidis MG (1998) New quaternary thiostannates and thiogermanates A2Hg3M2S8 (A = Cs, Rb; M = Sn, Ge) through Molten A2Sx. Reversible Glass Formation in Cs2Hg3M2S8. Chem Mater 10:1191–1199

    Article  Google Scholar 

  9. Aitken JA, Larson P, Mahanti SD, Kanatzidis MG (2001) Li2PbGeS4 and Li2EuGeS4: polar chalcopyrites with a severe tetragonal compression. Chem Mater 13:4714–4721

    Article  Google Scholar 

  10. Quintero M, Barreto A, Grima P, Tovar R, Quintero E, Porras GS, Ruiz J, Woolley JC, Lamarche G, Lamarche A-M (1999) Crystallographic properties of I2–Fe–IV–VI4 magnetic semiconductor compounds. Mater Res Bull 34:2263–2270

    Article  Google Scholar 

  11. Parasyuk OV, Gulay LD, Piskach LV, Gagalovska OP (2002) The Ag2S–HgS–GeS2 system at 670 K and the crystal structure of the Ag2HgGeS4 compound. J Alloys Compd 336:213–217

    Article  Google Scholar 

  12. Parasyuk OV, Piskach LV, Romanyuk YE, Olekseyuk ID, Zaremba VI, Pekhnyo VI (2005) Phase relations in the quasi-binary Cu2GeS3–ZnS and quasi-ternary Cu2S–Zn(Cd)S–GeS2 systems and crystal structure of Cu2ZnGeS4. J Alloys Compd 397:85–94

    Article  Google Scholar 

  13. Parasyuk OV, Olekseyuk ID, Piskach LV, Volkov SV, Pekhnyo VI (2005) Phase relations in the Ag2S–CdS–SnS2 system and the crystal structure of the compounds. J Alloys Compd 399:173–177

    Article  Google Scholar 

  14. Parasyuk OV, Fedorchuk AO, Kogut YM, Piskach LV, Olekseyuk ID (2010) The Ag2S–ZnS–GeS2 system: Phase diagram, glass-formation region and crystal structure of Ag2ZnGeS4. J Alloys Compd 500:26–29

    Article  Google Scholar 

  15. Kogut Y, Fedorchuk A, Zhbankov O, Romanyuk Y, Kityk I, Piskach L, Parasyuk O (2011) Isothermal section of the Ag2S–PbS–GeS2 system at 300K and the crystal structure of Ag2PbGeS4. J Alloys Compd 509:4264–4267

    Article  Google Scholar 

  16. Greil S( 2016) Untersuchungen an ternären und quaternären Kupfer-, Lithium-, und Silbersulfiden mit Diamantstruktur, PhD, Universität Regensburg

    Google Scholar 

  17. Davydyuk GE, Myronchuk GL, Kityk IV, Danyl’chuk SP, Bozhko VV, Parasyuk OV (2011) Ag2СdSnS4 single crystals as promising materials for optoelectronic. Opt Mater 33:1302–1306

    Article  Google Scholar 

  18. Parasyuk OV, Gulay LD, Romanyuk YE, Olekseyuk ID (2003) The Ag2Se–HgSe–SiSe2 system in the 0–60 mol.% SiSe2 region. J Alloys Compd 348:157–166

    Article  Google Scholar 

  19. Parasyuk OV, Gulay LD, Romanyuk YE, Olekseyuk ID, Piskach LV (2003) The Ag2Se–HgSe–GeSe2 system and crystal structures of the compounds. J Alloys Compd 351:135–144

    Article  Google Scholar 

  20. Averous M, Balkanski M (2012) Semimagnetic semiconductors and diluted magnetic semiconductors. Springer Science & Business Media

    Google Scholar 

  21. Dietl T (2010) A ten-year perspective on dilute magnetic semiconductors and oxides. Nat Mater 9:965–974

    Article  Google Scholar 

  22. Jumas JC, Philippot E, Maurin M (1979) Structure du rhodostannite synthétique. Acta Crystallogr B 35:2195–2197

    Article  Google Scholar 

  23. Chykhrij S, Sysa L, Parasyuk O, Piskach L (2000) Crystal structure of the Cu2CdSn3S8 compound. J Alloys Compd 307:124–126

    Article  Google Scholar 

  24. Garg G, Gupta S, Maddanimath T, Gascoin F, Ganguli AK (2003) Single crystal structure, electrical and electrochemical properties of the quaternary thiospinel: Ag2FeSn3S8. Solid State Ionics 164:205–209

    Article  Google Scholar 

  25. Garg G, Ramanujachary KV, Lofland SE, Lobanov MV, Greenblatt M, Maddanimath T, Vijayamohanan K, Ganguli AK (2003) Crystal structure, magnetic and electrochemical properties of a quaternary thiospinel: Ag2MnSn3S8. J Solid State Chem 174:229–232

    Article  Google Scholar 

  26. Padiou J, Jumas JC, Ribes M (1981) Sur une nouvelle famille de composes quaternaires MM’0.5Sn1.5S4 (M=Cu, Ag; M’= Mn, Fe Co, Ni) de type spinelle: caracterisation par spectroscopie Mossbauer de 119Sn et proprietes magnetiques. Rev Chim Miner 18:33–42

    Google Scholar 

  27. Yajima J, Ohta E, Kanazawa Y (1991) Toyohaite, Ag2FeSn3S8, a new mineral. Mineral J 15:222–232

    Article  Google Scholar 

  28. Caye R, Laurent Y, Picot P, Pierrot R, Levy C (1968) La hocartite, Ag2SnFeS4, une nouvelle espece minerale. Bull Soc Fr Miner Cristal 91:383–387

    Google Scholar 

  29. Gorochov O (1968) Les composes Ag8MX6 (M=Si, Ge, Sn et X=S, Se, Te). Bull Soc Chim Fr 6:2263–2275

    Google Scholar 

  30. Kokhan OP (1996) Phase relations in the systems Ag2X–BIVX2 (BIV – Si, Ge, Sn; X – S, Se) and properties of compounds. PhD thesis, Uzhgorod State University (in Ukrainian)

    Google Scholar 

  31. Hull S, Berastegui P, Grippa A (2005) Ag+ diffusion within the rock-salt structured superionic conductor Ag4Sn3S8. J Phys Condens Matter 17:1067–1084

    Article  Google Scholar 

  32. Amiel O, Frankel DC, Wada H (1995) Crystal structure and conductivity of the new superionic conductors Ag4Zr3S8 and Ag3.8Sn3S8. J Solid State Chem 116:409–421

    Article  Google Scholar 

  33. Ipser H, Mikula A, Katayama I (2010) Overview: The emf method as a source of experimental thermodynamic data. Calphad 34:271–278

    Article  Google Scholar 

  34. Kroupa A (2013) Modelling of phase diagrams and thermodynamic properties using Calphad method—development of thermodynamic databases. Comput Mater Sci 66:3–13

    Article  Google Scholar 

  35. Barin I (1995) Thermochemical data of pure substance. VCH, Weinheim

    Book  Google Scholar 

  36. Babanly MB, Yusibov YA, Babanly NB (2011) The EMF method with solid-state electrolyte in the thermodynamic investigation of ternary copper and silver chalcogenides. In: S Kara (Ed), InTech

    Google Scholar 

  37. Morachevskii AG, Voronin GF, eyderikh VA, Kutsenyuk IB (2003) Electrochemical methods investigations in thermodynamics of metallic system. Akademkniga (in Russian)

    Google Scholar 

  38. Diffractom (2010) Stoe WinXPOW (version 3.03), Stoe Cie GmbH Darmstadt

    Google Scholar 

  39. Kraus W, Nolze G (1996) POWDER CELL—program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Crystallogr 29:301–303

    Article  Google Scholar 

  40. Villars P, Cenzual E (eds) (2014) Pearson’s crystal data: crystal structure database for inorganic compounds, release 2014/15. ASM International, Materials Park, Ohio, USA

    Google Scholar 

  41. Robinel E, Kone A, Duclot MJ, Souquet JL (1983) Silver sulfide based glasses:(II). Electrochemical properties of GeS2-Ag2S-Agl glasses: transference number measurement and redox stability range. J Non-Cryst Solids 57:59–70

    Article  Google Scholar 

  42. Moroz MV, Prokhorenko MV, Demchenko PY, Reshetnyak OV (2017) Thermodynamic properties of saturated solid solutions of Ag7SnSe5Br and Ag8SnSe6 compounds in the Ag–Sn–Se–Br system measured by the EMF method. J Chem Thermodyn 106:228–231

    Article  Google Scholar 

  43. Moroz MV, Prokhorenko MV, Reshetnyak OV, Demchenko PY (2017) Electrochemical determination of thermodynamic properties of saturated solid solutions of Hg2GeSe3, Hg2GeSe4, Ag2Hg3GeSe6, and Ag1.4Hg1.3GeSe6 compounds in the Ag–Hg–Ge–Se system. J Solid State Electrochem 21:833–837

    Article  Google Scholar 

  44. Tesfaye F, Taskinen P (2014) Electrochemical study of the thermodynamic properties of matildite (β-AgBiS2) in different temperature and compositional ranges. J Solid State Electrochem 18:1683–1694

    Article  Google Scholar 

  45. Osadchii EG, Echmaeva EA (2007) The system Ag-Au-Se: Phase relations below 405 K and determination of standard thermodynamic properties of selenides by solid-state galvanic cell technique. Am Mineral 92:640–647

    Article  Google Scholar 

  46. Albers W, Schol K (1961) The P-T-X phase diagram of the system Sn-S. Philips Res Rep 16:329–342

    Google Scholar 

  47. Tesfaye F, Taskinen P (2014) Experimentally determined thermodynamic properties of schapbachite (α-AgBiS2) below T=700 K. J Chem Thermodyn 70:219–226

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Johan Gadolin Scholarship programme and Academy of Finland for financial support. This work was made under the project “Thermodynamic investigation of complex inorganic material systems for improved renewable energy and metals production processes” as part of the activities of the Johan Gadolin Process Chemistry Center at Åbo Akademi University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mykola Moroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moroz, M. et al. (2018). Thermodynamic Properties of Magnetic Semiconductors Ag2FeSn3S8 and Ag2FeSnS4 Determined by the EMF Method. In: Lambotte, G., Lee, J., Allanore, A., Wagstaff, S. (eds) Materials Processing Fundamentals 2018. TMS 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-72131-6_8

Download citation

Publish with us

Policies and ethics