Skip to main content

Ecology of Termites

  • Chapter
  • First Online:
Termites and Sustainable Management

Abstract

Termites show a structured social life, provisioned with work-based divisions, i.e., king, queen, workers, and soldiers. Ecologically, termites interact with living and nonliving surroundings and deliver a wide range of behaviors. They ensure the survival of colony members by harvesting food, constructing shelters, defending the external and internal threats, and nourishing the new borne progeny in a systematic manner. The termites are equipped with complex characteristics such as chemical communication, morphological and chemical defense, and brood care that enable their successful survival. Besides their usefulness, these tiny insects are a center of attraction because they damage the human economy as wood pests. In this chapter, the ecological role of termites is examined and explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aanen, D. K., Eggleton, P., Rouland-Lefevre, C., Guldberg-Froslev, T., Rosendahl, S., & Boomsma, J. J. (2002). The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proceedings of the National Academy of Sciences, 99, 14887–14892.

    Article  CAS  Google Scholar 

  • Abe, T. (1987). Evolution of life types in termites. In S. Kawano, J. H. Connell, & T. Hidaka (Eds.), Evolution and coadaptation in biotic communities (pp. 125–148). Tokyo: University of Tokyo Press.

    Google Scholar 

  • Abe, T. (1990). Evolution of worker caste in termites. In G. K. Veeresh, B. Mallik, & C. A. Viraktamah (Eds.), Social insects and the environments (pp. 29–30). New Delhi: Oxford & IBH.

    Google Scholar 

  • Abe, T., Bignell, D. E., & Higashi, M. (2000). Termites: Evolution, sociality, symbioses, ecology (p. 466). Dordrecht: Springer.

    Google Scholar 

  • Al-Fazairy, A. A., & Hassan, F. A. (2011). Infection of termites by Spodoptera littoralis nuclear Polyhedrosis virus. International Journal of Tropical Insect Science, 9, 37–39.

    Article  Google Scholar 

  • Allen, C. T., Foster, D. E., & Ueckert, D. N. (1980). Seasonal food habits of a desert termite, Gnathamitermes tubiformans, in West Texas. Environmental Entomology, 9, 461–466.

    Article  Google Scholar 

  • Bardgett, R. D., Herrick, J. E., Six, J., Jones, T. H., Strong, D. R., & Van der Putten, W. H. (2013). Soil ecology and ecosystem services (1st ed.p. 178). Oxford: Oxford University Press.

    Google Scholar 

  • Belbin, R. M. (2013). The coming shape of organization (p. 27). New York: Routledge.

    Google Scholar 

  • Bignell, D. E. (2006). Termites as soil engineers and soil processors. In H. Konig & A. Varma (Eds.), Intestinal microorganisms of termites and other invertebrates (pp. 183–220). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bignell, D. E., & Eggleton, P. (2000). Termites in ecosystems. In T. Abe, M. Higashi, & D. E. Bignell (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 363–387). Dordrecht: Kluwer Academic Press.

    Chapter  Google Scholar 

  • Bignell, D. E., Roisin, Y., & Lo, N. (2011). Biology of termites: A modern synthesis (p. 576). Dordrecht: Springer.

    Book  Google Scholar 

  • Bordereau, C., Robert, A., Van Tuyen, V., & Peppuy, A. (1997). Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insectes Sociaux, 44, 289–297.

    Article  Google Scholar 

  • Breznak, J. A., & Brune, A. (1993). Role of microorganisms in the digestion of lignocellulose by termites. Annual Review of Entomology, 39, 453–487.

    Article  Google Scholar 

  • Breznak, J. A., Brill, W. J., Mertins, J. W., & Coppel, H. C. (1973). Nitrogen fixation in termites. Nature, 244, 577–580.

    Article  CAS  PubMed  Google Scholar 

  • Brune, A. (2010). Methanogens in the digestive tract of termites. In J. H. P. Hackstein (Ed.), Microbiology monographs (pp. 81–100). Berlin/Heidelberg: Springer.

    Google Scholar 

  • Brussaard, L. (1997). Biodiversity and ecosystem functioning in soil. Ambio, 26, 563–570.

    Google Scholar 

  • Capinera, J. L. (2008). Encyclopedia of entomology (2nd ed.p. 3754). Dordrecht: Springer.

    Book  Google Scholar 

  • Chhillar, B. S., Saini, R. K., & Roshanlal, K. (2006). Emerging trends in economic entomology (pp. 191–192). Hissar: Chaudhary Charan Singh Haryana Agricultural University (CCSHAU) Press.

    Google Scholar 

  • Choe, J. C., & Crespi, B. J. (1997). The evolution of social behavior in insects and arachnids (1st ed.p. 76). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Chouvenc, T., Efstathion, C. A., Elliott, M. L., & NY, S. (2012). Resource competition between two fungal parasites in subterranean termites. Die Naturwissenschaften, 99, 49–58.

    Article  CAS  Google Scholar 

  • Chouvenc, T., Mullins, A. J., Efstathion, C. A., & NY, S. (2013). Virus-like symptoms in a termite (Isoptera: Kalotermitidae) field colony. Florida Entomologist, 96, 1612–1614.

    Article  Google Scholar 

  • Cornelius, M. L., & Osbrink, W. L. (2010). Effect of soil type and moisture availability on the foraging behavior of the formosan subterranean termite (Isoptera: Rhinotermitidae). Journal of Economic Entomology, 103, 799–807.

    Article  PubMed  Google Scholar 

  • Costa-Leonardo, A. M. (2006). Morphology of the sternal gland in workers of Coptotermes gestroi (Isoptera, Rhinotermitidae). Micron, 37, 551–556.

    Article  CAS  PubMed  Google Scholar 

  • Costa-Leonardo, A. M., & Haifig, I. (2010). Pheromones and exocrine glands in Isoptera. Vitamins and Hormones, 83, 521–549.

    Article  CAS  PubMed  Google Scholar 

  • Costa-Leonardo, A. M., & Haifig, I. (2013). Termite communication during different behavioral activities. In G. Witzany (Ed.), Biocommunication of animals (pp. 161–190). Dordrecht: Springer.

    Google Scholar 

  • Costa-Leonardo, A. M., Casarin, F. E., & Lima, J. T. (2009). Chemical communication in Isoptera. Neotropical Entomology, 38, 1–6.

    Article  Google Scholar 

  • Coty, D., Aria, C., Garrouste, R., Wils, P., Legendre, F., Nel, A., & Korb, J. (2014). The first ant-termite syninclusion in amber with CT-scan analysis of taphonomy. PLoS One, 9(8), e104410.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Culliney, T. W., & Grace, J. K. (2000). Prospects for the biological control of subterranean termites (Isoptera: Rhinotermitidae), with special reference to Coptotermes formosanus. Bulletin of Entomological Research, 90, 9–21.

    Article  CAS  PubMed  Google Scholar 

  • Dahlsjo, C. A. L., Parr, C. L., Malhi, Y., Rahman, H., Meir, P., Jones, D. T., & Eggleton, P. (2014). First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. Journal of Tropical Ecology, 30, 143–152.

    Article  Google Scholar 

  • Darlington, J. P. E. C. (1982). The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. Journal of Zoology, 198, 237–247.

    Article  Google Scholar 

  • Darlington, J. P. E. C. (1985). Attacks by doryline ants and termite nest defenses (Hymenoptera; Formicidae; Isoptera; Termitidae). Sociobiology, 11, 189–200.

    Google Scholar 

  • De Souza, O. F., & Brown, V. K. (2009). Effects of habitat fragmentation on Amazonian termite communities. Journal of Tropical Ecology, 10, 197–206.

    Article  Google Scholar 

  • Dean, W. R. J., & Milton, S. J. (1995). Plant and invertebrate assemblages on old fields in the arid southern Karoo, South Africa. African Journal of Ecology, 33, 1–13.

    Article  Google Scholar 

  • Dejean, A. (2011). Prey capture behavior in an arboreal African ponerine ant. PLoS One, 6(5), e19837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeVisse, S. N., Freymann, B. P., & Schnyder, H. (2008). Trophic interactions among invertebrates in termitaria in the African savanna: A stable isotope approach. Ecological Entomology, 33, 758–764.

    Google Scholar 

  • Dietrich, C., Kohler, T., & Brune, A. (2014). The cockroach origin of the termite gut microbiota: Patterns in bacterial community structure reflect major evolutionary events. Applied and Environmental Microbiology, 80, 2261–2269.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Disney, R. H. L. (2008). Two remarkable new species of scuttle-fly (Diptera: Phoridae) that parasitize termites (Isoptera) in Sulawesi. Systematic Entomology, 11, 413–422.

    Article  Google Scholar 

  • Donovan, S. E., Eggleton, P., & Bignell, D. E. (2001). Gut content analysis and a new feeding group classification of termites (Isoptera). Ecological Entomology, 26, 356–366.

    Article  Google Scholar 

  • Dronnet, S., Lohou, C., Christides, J. P., & Bagneres, A. G. (2006). Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud. Journal of Chemical Ecology, 32, 1027–1042.

    Article  CAS  PubMed  Google Scholar 

  • Edwards, R., & Mill, A. E. (1986). Termites in buildings. Their biology and control (p. 261). East Grinstead: Rentokil Ltd.

    Google Scholar 

  • Eggleton, P. (2001). Termites and trees: A review of recent advances in termite phylogenetics. Insects Sociaux, 48, 187–193.

    Article  Google Scholar 

  • Eggleton, P., & Tayasu, I. (2001). Feeding groups, life types and the global ecology of termites. Ecological Research, 16, 941–960.

    Article  Google Scholar 

  • Eggleton, P., Bignell, D. E., Sands, W. A., Mawdsley, N. A., Lawton, J. H., Wood, T. G., & Bignell, N. C. (1996). The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo forest reserve, Southern Cameroon. Philosophical Transactions of the Royal Society, B: Biological Sciences, 351, 51–68.

    Article  Google Scholar 

  • Errico, F., & Backwell, L. (2009). Assessing the function of early hominin bone tools. Journal of Archaeological Science, 36, 1764–1773.

    Article  Google Scholar 

  • Evans, A. M. (2011). Ecology of dead wood in the southeast (p. 39). Santa Fe: Forest Guild.

    Google Scholar 

  • Evans, T. A., Inta, R., Lai, J. C. S., & Lenz, M. (2007). Foraging vibration signals attract foragers and identify food size in the dry wood termite, Cryptotermes secundus. Insectes Sociaux, 54, 374–382.

    Article  Google Scholar 

  • Faye, A., Kane, P. D., Mbaye, D. F., Sallsy, D., & Sane, D. (2014). Study of the cassava varietal sensitivity to termites ravaging cuttings planted in farms in the department of Tivaouane (Senegal). International Journal of Science and Advanced Technology, 4, 6–16.

    Google Scholar 

  • Figueiredo, R. E. C. R., Vasconcellos, A., Policarpo, I. S., & Alves, R. R. N. (2015). Edible and medicinal termites: A global overview. Journal of Ethnobiology and Ethnomedicine, 11, 2–7.

    Article  Google Scholar 

  • Fleming, D. E. (2009). Eastern subterranean termite (Reticulitermes flavipes) found damaging sweet potato (Ipomoea batatas) in Mississippi. Midsouth Entomology, 2, 58–59.

    Google Scholar 

  • Flores, A. (2010). New assay helps track termites, other insects. Agricultural Research Service. United States Department of Agriculture. https://www.ars.usda.gov/news-events/news/research-news/2010/new-assay-helps-track-termites-other-insects/ Accessed on 25 July 2016.

  • Forbes, H. O. (1878). Termites kept in captivity by ants. Nature, 19(471), 4–5.

    Article  Google Scholar 

  • Fraser, P. J., Rasmussen, R. A., Creffield, J. W., French, J. R., & Khalil, M. A. K. (1986). Termites and global methane – Another assessment. Journal of Atmospheric Chemistry, 4, 295–310.

    Article  CAS  Google Scholar 

  • Freymann, B. P., Buitenwerf, R., & Desouza, O. (2008). The importance of termites (Isoptera) for the recycling of herbivore dung in tropical ecosystems: A review. European Journal of Entomology, 105, 165–173.

    Article  Google Scholar 

  • Geissler, P. W. (2011). The significance of earth-eating: Social and cultural aspects of geophagy among Luo children. Africa: The Journal of the International African Institute, 70, 653–682.

    Article  Google Scholar 

  • Ghaly, A., & Adwards, S. (2011). Termite damage to buildings: Nature of attacks and preventive construction methods. American Journal of Engineering and Applied Sciences, 4, 187–200.

    Article  Google Scholar 

  • Grace, J. K. (1989). A modified trap technique for monitoring Reticulitermes subterranean termite population (Isoptera: Rhinotermitidae). Pan-Pacific Entomologist, 65, 381–384.

    Google Scholar 

  • Grace, J. K., Cutten, G. M., Scheffrahn, R. H., & McEkevan, D. K. (1991). First infestation by Incisitermes minor of a Canadian building (Isoptera: Kalotermitidae). Sociobiology, 18, 299–304.

    Google Scholar 

  • Grigg, G. C. (1973). Some consequences of the shape and orientation of ‘magnetic’ termite mounds. Australian Journal of Zoology, 21, 231–237.

    Article  Google Scholar 

  • Hadlington, P. (1996). Australian termites and other common timber pests (2nd ed.p. 126). Kensington: New South Wales University Press.

    Google Scholar 

  • Harmon, M. E., Franklin, J. F., Swanson, F. J., Sollins, P., Gregory, S. V., Lattin, J. D., Anderson, N. H., Cline, S. P., Aumen, N. G., Sedell, J. R., Lienkaemper, G. W., Cromack, K., Jr., & Cummins, K. W. (1986). Ecology of coarse woody debris in temperate ecosystems. Advances in Ecological Research, 15, 133–302.

    Article  Google Scholar 

  • Harris, W. V. (1970). Termites of the Palearctic region. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. 2, pp. 295–313). New York: Academic Press.

    Google Scholar 

  • Heather, N. W. (1971). The exotic drywood termite Cryptotermes brevis (Walker) (Isoptera: Kalotermitidae) and endemic Australian drywood termites in Queensland. Australian Journal of Entomology, 10, 134–141.

    Article  Google Scholar 

  • Holldobler, B., & Wilson, E. O. (1990). The ants (pp. 559–566). Cambridge, MA: Belknap Press of Harvard University Press.

    Book  Google Scholar 

  • Holt, J. A., & Lepage, M. (2000). Termites and soil properties. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 389–407). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Howse, P. E. (1970). Termites: A study in social behaviour (p. 150). London: Hutchinson University Library.

    Google Scholar 

  • Ibrahim, B. U., & Adebote, D. A. (2012). Appraisal of the economic activities of termites: A review. Bayero Journal of Pure and Applied Sciences, 5(1), 84–89.

    Google Scholar 

  • Ibrahim, A., & Demisse, G. (2013). Evaluation of some botanicals against termites’ damage on hot pepper at Bako, Western Ethiopia. International Journal of Agricultural Policy and Research, 1, 48–52.

    Google Scholar 

  • Ikeda-Ohtsubo, W., & Brune, A. (2009). Cospeciation of termite gut flagellates and their bacterial endosymbionts: Trichonympha species and Candidatus Endomicrobium trichonymphae. Molecular Ecology, 18, 332–342.

    Article  CAS  PubMed  Google Scholar 

  • Inward, D., Vogler, A. P., & Eggleton, P. (2007). A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution, 44, 953–967.

    Article  CAS  PubMed  Google Scholar 

  • Jacklyn, P. M., & Munro, U. (2002). Evidence for the use of magnetic cues in mound construction by the termite Amitermes meridionalis (Isoptera: Termitinae). Australian Journal of Zoology, 50, 357–368.

    Article  Google Scholar 

  • Jaffe, K., Ramos, C., & Issa, S. (1995). Trophic interactions between ants and termites that share common nests. Annals of the Entomological Society of America, 88, 328–333.

    Article  Google Scholar 

  • Jmhasly, P., & Leuthold, R. H. (1999). Intraspecific colony recognition in the termites Macrotermes subhyalinus and Macrotermes bellicosus (Isoptera, Termitidae). Insectes Sociaux, 46, 164–170.

    Article  Google Scholar 

  • Jost, C., Haifig, I., de Camargo-Dietrich, C. R. R., & Costa-Leonardo, A. M. (2012). A comparative tunneling network approach to assess interspecific competition effects in termites. Insectes Sociaux, 59, 369–379.

    Article  Google Scholar 

  • Jouquet, P., Mamou, L., Lepage, M., & Velde, B. (2002). Effect of termites on clay minerals in tropical soils; fungus-growing termites as weathering agents. European Journal of Soil Science, 53, 521–527.

    Article  Google Scholar 

  • Jouquet, P., Dauber, J., Lagerlof, J., Lavelle, P., & Lepage, M. (2006). Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. Applied Soil Ecology, 32, 153–164.

    Article  Google Scholar 

  • Kahn, L., & Easton, B. (2010). Shelter II (p. 198). Bolinas: Shelter Publications.

    Google Scholar 

  • Kambhampati, S., & Eggleton, P. (2000). Taxonomy and phylogeny of termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 1–23). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Katayama, N., Ishikawa, Y., Takaoki, M., Yamashita, M., Nakayama, S., Kiguchi, K., Kok, R., Wada, H., & Mitsuhashi, J. (2008). Entomophagy: A key to space agriculture. Advances in Space Research, 41, 701–705.

    Article  Google Scholar 

  • Knudsen, J. W. (2002). Akula udongo (earth eating habit): A social and cultural practice among Chagga women on the slopes of Mount Kilimanjaro. African Journal of Indigenous Knowledge Systems, 1, 19–26.

    Google Scholar 

  • Kok, O. B., & Hewitt, P. H. (1990). Bird and mammal predators of the harvester termite Hodotermes mossambicus (Hagen) in semi-arid regions of South Africa. South African Journal of Science, 86, 34–37.

    Google Scholar 

  • Korb, J., Weil, T., Hoffmann, K., Foster, K. R., & Rehli, M. (2009). A gene necessary for reproductive suppression in termites. Science, 324, 758.

    Article  CAS  PubMed  Google Scholar 

  • Krishna, K. (2015). Termite. Encyclopædia Britannica. https://global.britannica.com/animal/termite. Accessed on 25 May 2016.

  • Krishna, K. (2016). Termite. Encyclopædia Britannica. https://global.britannica.com/animal/termite Access on 25 July 2016.

  • Lavelle, P., & Spain, A. V. (2001). Soil ecology (2nd ed.p. 316). Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Lepage, M. G. (1981). Étude de la prédation de Megaponera foetens (F.) sur les populations récoltantes de Macrotermitinae dans un ecosystème semi-aride (Kajiado-Kenya). Insectes Sociaux, 28, 247–262.

    Article  Google Scholar 

  • Levieux, J. (1966). Note préliminaire sur les colonnes dechasse de Megaponera fÅ“tens F. (Hyménoptère: Formicidæ). Insectes Sociaux (in French), 13, 117–126.

    Article  Google Scholar 

  • Longhurst, C., Baker, R., & Howse, P. E. (1979). Chemical crypsis in predatory ants. Experientia, 35, 870–872.

    Article  CAS  Google Scholar 

  • Lopez-Hernandez, D., Brossard, M., Fardeau, J. C., & Lepage, M. (2006). Effect of different termite feeding groups on P sorption and P availability in African and south American savannas. Biology and Fertility of Soils, 42, 207–214.

    Article  Google Scholar 

  • Machida, M., Kitade, O., Miura, T., & Matsumoto, T. (2001). Nitrogen recycling through proctodeal trophallaxis in the Japanese damp-wood termite Hodotermopsis japonica (Isoptera, Termopsidae). Insectes Sociaux, 48, 52–56.

    Article  Google Scholar 

  • Mathew, T. T. G., Reis, R., DeSouza, O., & Ribeiro, S. P. (2005). Predation and interference competition between ants (Hymenoptera: Formicidae) and arboreal termites (Isoptera: Termitidae). Sociobiology, 46, 409–419.

    Google Scholar 

  • Matsuura, K. (2006). Termite-egg mimicry by a sclerotium-forming fungus. Proceedings of the Royal Society B: Biological Sciences, 273(1591), 1203–1209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuura, K., Tanaka, C., & Nishida, T. (2000). Symbiosis of a termite and a sclerotium-forming fungus: Sclerotia mimic termite eggs. Ecological Research, 15, 405–414.

    Article  Google Scholar 

  • Matsuura, K., Yashiro, T., Shimizu, K., Tatsumi, S., & Tamura, T. (2009). Cuckoo fungus mimics termite eggs by producing the cellulose-digesting enzyme β-glucosidase. Current Biology, 19, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Maynard, D. S., Crowther, T. W., King, J. R., Warren, R. J., & Bradford, M. A. (2015). Temperate forest termites: Ecology, biogeography, and ecosystem impacts. Ecological Entomology, 40, 199–221.

    Article  Google Scholar 

  • McMahan, E. A. (1966). Studies of termite wood-feeding preferences. Hawaiian Entomological Society, 19, 239–250.

    Google Scholar 

  • Merritt, N. R. C., & Starr, C. K. (2010). Comparative nesting habits and colony composition of three arboreal termites (Isoptera: Termitidae) in Trinidad & Tobago, West Indies. Sociobiology, 56, 611–622.

    Google Scholar 

  • Messenger, M. T., & Su, N. Y. (2005). Agonistic behavior between colonies of the formosan subterranean termite (Isoptera: Rhinotermitidae) from Louis Armstrong Park, New Orleans, Louisiana. Sociobiology, 45, 331–345.

    Google Scholar 

  • Mill, A. E. (1983). Observations on Brazilian termite alate swarms and some structures used in the dispersal of reproductives (Isoptera: Termitidae). Journal of Natural History, 17, 309–320.

    Article  Google Scholar 

  • Mills, G., & Harvey, M. (2001). African predators (p. 71). Washington, DC: Smithsonian Institution Press.

    Google Scholar 

  • Miramontes, O., DeSouza, O., Paiva, L. R., Marins, A., Orozco, S., & Aegerter, C. M. (2014). Lévy flights and self-similar exploratory behavior of termite workers: Beyond model fitting. PLoS One, 9(10), e111183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell, J. D. (2002). Termites as pests of crops, forestry, rangeland and structures in Southern Africa and their control. Sociobiology, 40, 47–69.

    Google Scholar 

  • Miura, T., & Matsumoto, T. (2000). Soldier morphogenesis in a nasute termite: Discovery of a disc-like structure forming a soldier nasus. Proceedings of the Royal Society B: Biological Sciences, 267(1449), 1185–1189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mueller, U. G., & Gerardo, N. (2002). Fungus-farming insects: Multiple origins and diverse evolutionary histories. Proceedings of the National Academy of Sciences, 99(24), 15247–15249.

    Article  CAS  Google Scholar 

  • Nchito, M., Wenzel Geissler, P., Mubila, L., Friis, H., & Olsen, A. (2004). Effects of iron and multimicronutrient supplementation on geophagy: A two-by-two factorial study among Zambian schoolchildren in Lusaka. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98, 218–227.

    Article  CAS  PubMed  Google Scholar 

  • Neoh, K. B., Yeap, B. K., Tsunoda, K., Yoshimura, T., Lee, C. Y., & Korb, J. (2012). Do termites avoid carcasses? Behavioral responses depend on the nature of the carcasses. PLoS One, 7(4), e36375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nhamo, N. (2007). The contribution of different fauna communities to improved soil health, a case of Zimbabwean soils under conservation agriculture. University of Bonn Ecology and Development Series, 56, 131.

    Google Scholar 

  • Noirot, C. (1970). The nest of termites. In K. Krishna & F. M. Weesner (Eds.), Biology of termites (Vol. 2, pp. 73–125). New York: Academic Press.

    Google Scholar 

  • Noirot, C., & Darlington, J. P. E. C. (2000). Termite nests: Architecture, regulation and defense. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 121–139). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Nyakupfuka, A. (2013). Global delicacies: Discover missing links from ancient Hawaiian teachings to clean the plaque of your soul and reach your higher self (pp. 40–41). Bloomington: Balboa Press.

    Google Scholar 

  • Pathak, M. D., & Khan, Z. R. (1994). Insect pests of rice (p. 79). Manila: International Rice Research Institute.

    Google Scholar 

  • Paul, B. B., & Rueben, J. M. (2005). Arizona termites of economic importance (pp. 9–17). Tucson: University of Arizona Press.

    Google Scholar 

  • Pearce, M. (1997). Termites: Biology and pest management (1st ed.p. 172). Chatham: CAB International.

    Google Scholar 

  • Polizzi, J. M., & Forschler, B. T. (1998). Intra- and interspecific agonism in Reticulitermes flavipes (Kollar) and R. virginicus (Banks) and effects of arena and group size in laboratory assays. Insectes Sociaux, 45, 43–49.

    Article  Google Scholar 

  • Prestwich, G. D. (1982). From tetracycles to macrocycles. Tetrahedron, 38, 1911–1919.

    Article  CAS  Google Scholar 

  • Prestwich, G. D. (1984). Chemical systematics of termite exocrine secretions. Annual Review of Ecology and Systematics, 14, 287–311.

    Article  Google Scholar 

  • Prestwich, G. D., & Chen, D. (1981). Soldier defense secretions of Trinervitermes bettonianus (Isoptera, Nasutitermitinae): Chemical variation in allopatric populations. Journal of Chemical Ecology, 7, 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Radek, R. (1999). Flagellates, bacteria, and fungi associated with termites: Diversity and function in nutrition – A review. Ecotrop, 5, 183–196.

    Google Scholar 

  • Reagan, D. P., & Waide, R. B. (1996). The food web of a tropical rain forest (p. 294). Chicago: University of Chicago Press.

    Google Scholar 

  • Reddy, M. V., Cogle, A. L., Balashourl, P., Kumar, K. V. P., Rao, K. P. C., & Jangawad, L. S. (1994). Soil management and termite damage to maize (Zea mays L.) in a semi-arid tropical alfisol. International Journal of Pest Management, 40, 170–172.

    Article  Google Scholar 

  • Reinhard, J., & Kaib, M. (2001). Trail communication during foraging and recruitment in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Journal of Insect Behavior, 14, 157–171.

    Article  Google Scholar 

  • Richard, F. J., & Hunt, J. H. (2013). Intra-colony chemical communication in social insects. Insectes Sociaux, 60, 275–291.

    Article  Google Scholar 

  • Richardson, P. K. R., & Bearder, S. K. (1984). The hyena family. In D. W. MacDonald (Ed.), The encyclopedia of mammals (pp. 158–159). New York: Facts on File Publication.

    Google Scholar 

  • Ritter, M. (2006). The physical environment: An introduction to physical geography (p. 450). Wisconsin: University of Wisconsin.

    Google Scholar 

  • Robert, H. (1987). Forest insect pests of Papua New Guinea. 3. White ants (termites) attacks on plantation Trees; Entemology Bulletinns; No 47, in Harvest 12 (3): Department of Agriculture and Livestock; Konedobu.

    Google Scholar 

  • Roisin, Y. (2000). Diversity and evolution of caste patterns. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 95–120). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Roisin, Y., & Pasteels, J. M. (1986). Reproductive mechanisms in termites: Polycalism and polygyny in Nasutitermes polygynus and N. costalis. Insectes Sociaux, 33, 149–167.

    Article  Google Scholar 

  • Rosengaus, R. B., Traniello, J. F. A., Chen, T., Brown, J. J., & Karp, R. D. (1999). Immunity in a social insect. Naturwissenschaften, 86, 588–591.

    Article  CAS  Google Scholar 

  • Ross, P. (2007). Extraordinary animals: An encyclopedia of curious and unusual animals (p. 26). Westport: Greenwood Press.

    Google Scholar 

  • Saathoff, E., Olsen, A., Kvalsvig, J. D., & Geissler, P. W. (2002). Geophagy and its association with geohelminth infection in rural schoolchildren from northern Kwa Zulu-Natal, South Africa. Transactions of the Royal Society of Tropical Medicine and Hygiene, 96, 485–490.

    Article  PubMed  Google Scholar 

  • Sanderson, M. G. (1996). Biomass of termites and their emissions of methane and carbon dioxide: A global database. Global Biogeochemical Cycles, 10, 543–557.

    Article  CAS  Google Scholar 

  • Santos, P. P., Vasconcellos, A., Jahyny, B., & Delabie, J. H. C. (2010). Ant fauna (Hymenoptera, Formicidae) associated to arboreal nests of Nasutitermes sp: (Isoptera, Termitidae) in a cacao plantation in southeastern Bahia, Brazil. Rev Brasileira de Entomol, 54, 450–454.

    Article  Google Scholar 

  • Schmid-Hempel, P. (1998). Parasites in social insects. Princeton: Princeton University Press.

    Google Scholar 

  • Shattuck, S. O., & Heterick, B. E. (2011). Revision of the ant genus Iridomyrmex (Hymenoptera: Formicidae). Zootaxa, 2845, 1–74.

    Google Scholar 

  • Sileshi, G. W., Nyeko, P., Nkunika, P. O. Y., Sekematte, B. M., Akinnifesi, F. K., & Ajayi, O. C. (2009). Integrating ethno-ecological and scientific knowledge of termites for sustainable termite management and human welfare in Africa. Ecology and Society, 14(1), 48.

    Article  Google Scholar 

  • Sillam-Dusses, D., Robert, A., Semon, E., Lacey, M., & Bordereau, C. (2006). Trail-following pheromones and phylogeny in termites. Proceedings of the IUSSI Congress, Washington, DC. http://iussi.confex.com/iussi/2006/techprogram/P1712.HTM. Accessed in 25 Dec 2006.

  • Slaytor, M. (1992). Cellulose digestion in termites and cockroaches: What role do symbionts play? Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 103, 775–784.

    Article  Google Scholar 

  • Sobotnik, J., Hanus, R., Kalinova, B., Piskorski, R., Cvacka, J., Bourguignon, T., & Roisin, Y. (2008). (E,E)-α-Farnesene, an alarm pheromone of the termite Prorhinotermes canalifrons. Journal of Chemical Ecology, 34, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Sobotnik, J., Bourguignon, T., Hanus, R., Weyda, F., & Roisin, Y. (2010). Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae). Biological Journal of the Linnean Society, 99, 839–848.

    Article  Google Scholar 

  • Sobotnik, J., Bourguignon, T., Hanus, R., Demianova, Z., Pytelkova, J., Mares, M., Foltynova, P., Preisler, J., Cvacka, J., Krasulova, J., & Roisin, Y. (2012). Explosive backpacks in old termite workers. Science, 337, 436–436.

    Article  CAS  PubMed  Google Scholar 

  • Su, N. Y. (2005). Response of the formosan subterranean termites (Isoptera: Rhinotermitidae) to baits or nonrepellent termiticides in extended foraging arenas. Journal of Economic Entomology, 98, 2143–2152.

    Article  CAS  PubMed  Google Scholar 

  • Su, N. Y., & Scheffrahn, R. H. (1990). Economically important termites in the United States and their control. Sociobiology, 17, 77–94.

    Google Scholar 

  • Su, N. Y., & Scheffrahn, R. H. (2000). Termites as pests of buildings in termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 437–453). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Sugimoto, A., Inoue, T., Kirtibutr, N., & Abe, T. (1998). Methane oxidation by termite mounds estimated by the carbon isotopic composition of methane. Global Biogeochemical Cycles, 12, 595–605.

    Article  CAS  Google Scholar 

  • Sujada, N., Sungthong, R., & Lumyong, S. (2014). Termite nests as an abundant source of cultivable actinobacteria for biotechnological purposes. Microbes and Environments, 29, 211–219.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun, Q., Haynes, K. F., & Zhou, X. (2013). Differential undertaking response of a lower termite to congeneric and conspecific corpses. Scientific Reports, 3, 1–8.

    Google Scholar 

  • Tokuda, G., Watanabe, H., Matsumoto, T., & Noda, H. (1997). Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): Distribution of cellulases and properties of endo-beta-1,4-glucanase. Zoological Science, 14, 83–93.

    Article  CAS  PubMed  Google Scholar 

  • Trager, J. C. (1991). A revision of the fire ants, Solenopsis geminata group (Hymenoptera: Formicidae: Myrmicinae). Journal of the New York Entomological Society, 99, 141–198.

    Google Scholar 

  • Traniello, J. F. A. (1981). Enemy deterrence in the recruitment strategy of a termite: Soldier organized foraging in Nasutitermes costalis. Proceedings of the National Academy of Sciences, 78, 1976–1979.

    Article  CAS  Google Scholar 

  • Traniello, J. F., & Busher, C. (1985). Chemical regulation of polyethism during foraging in the neotropical termite Nasutitermes costalis. Journal of Chemical Ecology, 11, 319–332.

    Article  CAS  PubMed  Google Scholar 

  • Traniello, J. F. A., & Leuthold, R. H. (2000). Behavior and ecology of foraging in termites. In T. Abe, D. E. Bignell, & M. Higashi (Eds.), Termites: Evolution, sociality, symbioses, ecology (pp. 141–168). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Tsunoda, K. (2005). Improved management of termites to protect Japanese homes. Proceedings of the 5th International Conference on Urban Pests, Perniagaan Ph’ng, Malaysia, pp 33–37 http://www.icup.org.uk/reports%5CICUP005.pdf

  • Ulyshen, M. D., & Shelton, T. G. (2011). Evidence of cue synergism in termite corpse response behavior. Naturwissenschaften, 99, 89–93.

    Article  PubMed  CAS  Google Scholar 

  • Upadhyay, R. K. (2013). Effects of plant latex based anti-termite formulations on Indian white termite Odontotermes obesus (Isoptera: Odontotermitidae) in sub-tropical high infestation areas. Open Journal of Animal Sciences, 3, 281–294.

    Article  Google Scholar 

  • van der Cingel, N. A. (2001). An atlas of orchid pollination: America, Africa, Asia and Australia (p. 224). Rotterdam: Balkema.

    Google Scholar 

  • Vane, C. H., Kim, A. W., Moss-Hayes, V., Snape, C. E., Diaz, M. C., Khan, N. S., Engelhart, S. E., & Horton, B. P. (2013). Degradation of mangrove tissues by arboreal termites (Nasutitermes acajutlae) and their role in the mangrove C cycle (Puerto Rico): Chemical characterization and organic matter provenance using bulk δ13C, C/N, alkaline CuO oxidation-GC/MS, and solid-state. Geochemistry, Geophysics, Geosystems, 14, 3176–3191.

    Article  Google Scholar 

  • Veeresh, G. K., Rajagopal, D., & Kumar, N. G. (1989). Management of termites in mango orchard. Acta Horticulturae, (231), 633–638.

    Google Scholar 

  • Wade, W. W. (2002). Ecology of desert systems (p. 216). Burlington: Elsevier.

    Google Scholar 

  • Watson, J. A. L. (1973). Austrospirachtha mimetes a new termitophilous corotocine from Northern Australia (Coleoptera: Staphylinidae). Australian Journal of Entomology, 12, 307–310.

    Article  Google Scholar 

  • Weiser, J., & Hrdy, I. (2009). Pyemotes-mites as parasites of termites. Zeitschrift für Angewandte Entomologie, 51(1–4), 94–97.

    Article  Google Scholar 

  • Wickings, K., & Grandy, A. S. (2011). The oribatid mite Scheloribates moestus (Acari: Oribatida) alters litter chemistry and nutrient cycling during decomposition. Soil Biology and Biochemistry, 43, 351–358.

    Article  CAS  Google Scholar 

  • Wilson, E. O. (2014). A window on eternity: A biologist’s walk through Gorongosa National Park (1st ed.p. 149). New York: Simon & Schuster Inc.

    Google Scholar 

  • Wilson, D. S., & Clark, A. B. (1977). Above ground defense in the harvester termite, Hodotermes mossambicus. Journal of the Entomological Society of Southern Africa, 40, 271–282.

    Google Scholar 

  • Zoberi, M. H., & Grace, J. K. (1990). Fungi associated with subterranean termite Reticulitermes flavipes in Ontario. Mycologia, 82, 289–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Kamran Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ahmad, S.K., Dawah, H.A., Khan, M.A. (2018). Ecology of Termites. In: Khan, M., Ahmad, W. (eds) Termites and Sustainable Management. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-72110-1_3

Download citation

Publish with us

Policies and ethics