Skip to main content

Thyroid Cancer in Children and Adolescents

  • Chapter
  • First Online:
The Thyroid and Its Diseases
  • 2847 Accesses

Abstract

An increasing number of children and adolescents are diagnosed with thyroid nodules. Similar to adults, the majority of nodules are benign, and the appearance of the nodule on thyroid ultrasound is the most efficient method of determining which nodules should undergo evaluation using fine needle aspiration to stratify patients for surveillance or surgical resection. Total thyroidectomy is the treatment of choice for the majority of patients with papillary thyroid cancer. Lobectomy is reserved for patients with indeterminate cytology and no evidence of a malignant oncogene, as well as differentiated thyroid cancer (DTC) variants with low invasive potential. The incorporation of the American Thyroid Association (ATA) pediatric guidelines on the evaluation and management of thyroid nodules and DTC risk levels allows for selective use of radioiodine treatment, reserving immediate postoperative RAI for patients with an increased risk of having persistent disease. For patients with a family history of multiple endocrine neoplasia type 2 (MEN2), the timing for thyroidectomy, as well as the timing for initiation of surveillance for pheochromocytoma and hyperparathyroidism, is defined by the RET codon in accordance with recommendations from ATA guidelines on medullary thyroid cancer (MTC). There is an increased risk for de novo mutations of RET codon 918 (MEN2B), and diagnosis after 4 years of age is associated with a decreased likelihood of achieving surgical remission from MTC. Disease-specific mortality for pediatric thyroid cancer is very low; however, the risk of medical and surgical complications remains high. This risk may be reduced by creation and referral of children and adolescents to regional, high-volume pediatric thyroid referral centers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vergamini LB, et al. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr. 2014;164(6):1481–5.

    Article  PubMed  Google Scholar 

  2. Siegel DA, et al. Cancer incidence rates and trends among children and adolescents in the United States, 2001-2009. Pediatrics. 2014;134(4):e945–55.

    Article  PubMed  Google Scholar 

  3. Gupta A, et al. A standardized assessment of thyroid nodules in children confirms higher cancer prevalence than in adults. J Clin Endocrinol Metab. 2013;98(8):3238–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427–53.

    Article  CAS  PubMed  Google Scholar 

  5. Francis GL, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716–59.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee YA, et al. Pediatric patients with multifocal papillary thyroid cancer have higher recurrence rates than adult patients: a retrospective analysis of a large pediatric thyroid cancer cohort over 33 years. J Clin Endocrinol Metab. 2015;100(4):1619–29.

    Article  CAS  PubMed  Google Scholar 

  7. Corrias A, et al. Diagnostic features of thyroid nodules in pediatrics. Arch Pediatr Adolesc Med. 2010;164(8):714–9.

    Article  PubMed  Google Scholar 

  8. Hayashida N, et al. Thyroid ultrasound findings in children from three Japanese prefectures: Aomori, Yamanashi and Nagasaki. PLoS One. 2013;8(12):e83220.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Avula S, et al. Incidental thyroid abnormalities identified on neck US for non-thyroid disorders. Pediatr Radiol. 2010;40(11):1774–80.

    Article  PubMed  Google Scholar 

  10. Kovalchik SA, et al. Absolute risk prediction of second primary thyroid cancer among 5-year survivors of childhood cancer. J Clin Oncol. 2013;31(1):119–27.

    Article  PubMed  Google Scholar 

  11. Ronckers CM, et al. Thyroid cancer in childhood cancer survivors: a detailed evaluation of radiation dose response and its modifiers. Radiat Res. 2006;166(4):618–28.

    Article  CAS  PubMed  Google Scholar 

  12. Kovatch KJ, Bauer AJ, Isaacoff EJ, Prickett KK, Adzick NS, Kazahaya K, Sullivan LM, Mostoufi-Moab S et al. Pediatric thyroid carcinoma in patients with Graves’ disease: the role of ultrasound in selecting patients for definitive therapy. Horm Res Paediatr, 2015;83:408–13.

    Article  CAS  Google Scholar 

  13. Corrias A, et al. Thyroid nodules and cancer in children and adolescents affected by autoimmune thyroiditis. Arch Pediatr Adolesc Med. 2008;162(6):526–31.

    Article  PubMed  Google Scholar 

  14. Kambalapalli M, et al. Ultrasound characteristics of the thyroid in children and adolescents with goiter: a single center experience. Thyroid. 2015;25(2):176–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Capezzone M, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer. 2008;15(4):1075–81.

    Article  CAS  PubMed  Google Scholar 

  16. Sippel RS, Caron NR, Clark OH. An evidence-based approach to familial nonmedullary thyroid cancer: screening, clinical management, and follow-up. World J Surg. 2007;31(5):924–33.

    Article  PubMed  Google Scholar 

  17. Rosario PW, et al. Ultrasonographic screening for thyroid cancer in siblings of patients with apparently sporadic papillary carcinoma. Thyroid. 2012;22(8):805–8.

    Article  PubMed  Google Scholar 

  18. Sadowski SM, et al. Prospective screening in familial nonmedullary thyroid cancer. Surgery. 2013;154(6):1194–8.

    Article  PubMed  Google Scholar 

  19. Septer S, et al. Thyroid cancer complicating familial adenomatous polyposis: mutation spectrum of at-risk individuals. Hered Cancer Clin Pract. 2013;11(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Pilarski R, et al. Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst. 2013;105(21):1607–16.

    Article  CAS  PubMed  Google Scholar 

  21. Lauper JM, et al. Spectrum and risk of neoplasia in Werner syndrome: a systematic review. PLoS One. 2013;8(4):e59709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bubien V, et al. High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet. 2013;50(4):255–63.

    Article  CAS  PubMed  Google Scholar 

  23. Smith JR, et al. Thyroid nodules and cancer in children with PTEN hamartoma tumor syndrome. J Clin Endocrinol Metab. 2011;96(1):34–7.

    Article  CAS  PubMed  Google Scholar 

  24. Bertherat J, et al. Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 2009;94(6):2085–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buryk MA, et al. Can malignant thyroid nodules be distinguished from benign thyroid nodules in children and adolescents by clinical characteristics? A review of 89 pediatric patients with thyroid nodules. Thyroid. 2015;25(4):392–400.

    Article  CAS  PubMed  Google Scholar 

  26. Papendieck P, et al. Differentiated thyroid cancer in children: prevalence and predictors in a large cohort with thyroid nodules followed prospectively. J Pediatr. 2015;167(1):199–201.

    Article  PubMed  Google Scholar 

  27. Wray CJ, et al. Failure to recognize multiple endocrine neoplasia 2B: more common than we think? Ann Surg Oncol. 2008;15(1):293–301.

    Article  PubMed  Google Scholar 

  28. McLeod DS, et al. Thyrotropin and thyroid cancer diagnosis: a systematic review and dose-response meta-analysis. J Clin Endocrinol Metab. 2012;97(8):2682–92.

    Article  CAS  PubMed  Google Scholar 

  29. Mussa A, et al. Serum thyrotropin concentration in children with isolated thyroid nodules. J Pediatr. 2013;163(5):1465–70.

    Article  CAS  PubMed  Google Scholar 

  30. Rinaldi S, et al. Thyroid-stimulating hormone, thyroglobulin, and thyroid hormones and risk of differentiated thyroid carcinoma: the EPIC study. J Natl Cancer Inst. 2014;106(6):dju097.

    Article  PubMed  CAS  Google Scholar 

  31. Ly S, et al. Features and outcome of autonomous thyroid nodules in children: 31 consecutive patients seen at a single center. J Clin Endocrinol Metab. 2016;101(10):3856–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Trimboli P, Treglia G, Giovanella L. Preoperative measurement of serum thyroglobulin to predict malignancy in thyroid nodules: a systematic review. Horm Metab Res. 2015;47(4):247–52.

    CAS  PubMed  Google Scholar 

  33. Oltmann SC, et al. Markedly elevated thyroglobulin levels in the preoperative thyroidectomy patient correlates with metastatic burden. J Surg Res. 2014;187(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  34. Zimmermann MB, et al. Thyroglobulin is a sensitive measure of both deficient and excess iodine intakes in children and indicates no adverse effects on thyroid function in the UIC range of 100-299 mug/L: a UNICEF/ICCIDD study group report. J Clin Endocrinol Metab. 2013;98(3):1271–80.

    Article  CAS  PubMed  Google Scholar 

  35. Haugen BR, et al. 2015 American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association Guidelines Task Force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  36. American Institute of Ultrasound in, Medicine, et al. AIUM practice guideline for the performance of a thyroid and parathyroid ultrasound examination. J Ultrasound Med. 2013;32(7):1319–29.

    Article  Google Scholar 

  37. Lyshchik A, et al. Diagnosis of thyroid cancer in children: value of gray-scale and power doppler US. Radiology. 2005;235(2):604–13.

    Article  PubMed  Google Scholar 

  38. Mussa A, et al. Predictors of malignancy in children with thyroid nodules. J Pediatr. 2015;167(4):886–92. e1

    Article  PubMed  Google Scholar 

  39. Al Nofal A, et al. Accuracy of thyroid nodule sonography for the detection of thyroid cancer in children: systematic review and meta-analysis. Clin Endocrinol. 2016;84(3):423–30.

    Article  Google Scholar 

  40. Koo JS, Hong S, Park CS. Diffuse sclerosing variant is a major subtype of papillary thyroid carcinoma in the young. Thyroid. 2009;19(11):1225–31.

    Article  PubMed  Google Scholar 

  41. Fukushima M, et al. Clinicopathologic characteristics and prognosis of diffuse sclerosing variant of papillary thyroid carcinoma in Japan: an 18-year experience at a single institution. World J Surg. 2009;33(5):958–62.

    Article  PubMed  Google Scholar 

  42. Lee JY, et al. Diffuse sclerosing variant of papillary carcinoma of the thyroid: imaging and cytologic findings. Thyroid. 2007;17(6):567–73.

    Article  CAS  PubMed  Google Scholar 

  43. Akaishi J, et al. Clinicopathologic features and outcomes in patients with diffuse sclerosing variant of papillary thyroid carcinoma. World J Surg. 2015;39(7):1728–35.

    Article  PubMed  Google Scholar 

  44. Regalbuto C, et al. A diffuse sclerosing variant of papillary thyroid carcinoma: clinical and pathologic features and outcomes of 34 consecutive cases. Thyroid. 2011;21(4):383–9.

    Article  PubMed  Google Scholar 

  45. Koltin D, et al. Pediatric thyroid nodules: ultrasonographic characteristics and inter-observer variability in prediction of malignancy. J Pediatr Endocrinol Metab. 2016;29(7):789–94.

    Article  PubMed  Google Scholar 

  46. Bauer AJ, Francis GL. Evaluation and management of thyroid nodules in children. Curr Opin Pediatr. 2016;28(4):536–44.

    Article  CAS  PubMed  Google Scholar 

  47. Jatana KR, Zimmerman D. Pediatric thyroid nodules and malignancy. Otolaryngol Clin N Am. 2015;48(1):47–58.

    Article  Google Scholar 

  48. Moon JH, et al. Thyroglobulin in washout fluid from lymph node fine-needle aspiration biopsy in papillary thyroid cancer: large-scale validation of the cutoff value to determine malignancy and evaluation of discrepant results. J Clin Endocrinol Metab. 2013;98(3):1061–8.

    Article  CAS  PubMed  Google Scholar 

  49. Giovanella L, Bongiovanni M, Trimboli P. Diagnostic value of thyroglobulin assay in cervical lymph node fine-needle aspirations for metastatic differentiated thyroid cancer. Curr Opin Oncol. 2013;25(1):6–13.

    Article  CAS  PubMed  Google Scholar 

  50. Choi JS, et al. Preoperative staging of papillary thyroid carcinoma: comparison of ultrasound imaging and CT. AJR Am J Roentgenol. 2009;193(3):871–8.

    Article  PubMed  Google Scholar 

  51. Nell S, et al. Qualitative elastography can replace thyroid nodule fine-needle aspiration in patients with soft thyroid nodules. A systematic review and meta-analysis. Eur J Radiol. 2015;84(4):652–61.

    Article  PubMed  Google Scholar 

  52. Borysewicz-Sanczyk H, et al. Practical application of elastography in the diagnosis of thyroid nodules in children and adolescents. Horm Res Paediatr. 2016;86(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  53. Barrio M, et al. The incidence of thyroid cancer in focal hypermetabolic thyroid lesions: an 18F-FDG PET/CT study in more than 6000 patients. Nucl Med Commun. 2016;37(12):1290–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Thyroid. 2009;19(11):1159–65.

    Article  PubMed  Google Scholar 

  55. Baloch ZW, LiVolsi VA. Post fine-needle aspiration histologic alterations of thyroid revisited. Am J Clin Pathol. 1999;112(3):311–6.

    Article  CAS  PubMed  Google Scholar 

  56. Norlen O, et al. Risk of malignancy for each Bethesda class in pediatric thyroid nodules. J Pediatr Surg. 2015;50(7):1147–9.

    Article  PubMed  Google Scholar 

  57. Wharry LI, et al. Thyroid nodules (>/=4 cm): can ultrasound and cytology reliably exclude cancer? World J Surg. 2014;38(3):614–21.

    Article  PubMed  Google Scholar 

  58. McCoy KL, et al. The incidence of cancer and rate of false-negative cytology in thyroid nodules greater than or equal to 4 cm in size. Surgery. 2007;142(6):837–44. discussion 844 e1-3

    Article  PubMed  Google Scholar 

  59. Monaco SE, et al. Cytomorphological and molecular genetic findings in pediatric thyroid fine-needle aspiration. Cancer Cytopathol. 2012;120(5):342–50.

    Article  PubMed  Google Scholar 

  60. Smith M, et al. Indeterminate pediatric thyroid fine needle aspirations: a study of 68 cases. Acta Cytol. 2013;57(4):341–8.

    Article  PubMed  Google Scholar 

  61. Cibas ES, Ali SZ. The Bethesda system for reporting thyroid cytopathology. Am J Clin Pathol. 2009;132(5):658–65.

    Article  PubMed  Google Scholar 

  62. Nikiforov YE, et al. Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples. J Clin Endocrinol Metab. 2011;96(11):3390–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nikiforov YE, et al. Highly accurate diagnosis of cancer in thyroid nodules with follicular neoplasm/suspicious for a follicular neoplasm cytology by ThyroSeq v2 next-generation sequencing assay. Cancer. 2014;120(23):3627–34.

    Article  CAS  PubMed  Google Scholar 

  64. Buryk MA, et al. Preoperative cytology with molecular analysis to help guide surgery for pediatric thyroid nodules. Int J Pediatr Otorhinolaryngol. 2013;77(10):1697–700.

    Article  PubMed  Google Scholar 

  65. Ballester LY, et al. Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatr Dev Pathol. 2016;19(2):94–100.

    Article  PubMed  Google Scholar 

  66. Nikita ME, et al. Mutational analysis in pediatric thyroid cancer and correlations with age, ethnicity, and clinical presentation. Thyroid. 2016;26(2):227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Picarsic JL, et al. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol. 2016;19(2):115–22.

    Article  PubMed  Google Scholar 

  68. Givens DJ, et al. BRAF V600E does not predict aggressive features of pediatric papillary thyroid carcinoma. Laryngoscope. 2014;124(9):E389–93.

    Article  CAS  PubMed  Google Scholar 

  69. Henke LE, et al. BRAF V600E mutational status in pediatric thyroid cancer. Pediatr Blood Cancer. 2014;61(7):1168–72.

    Article  CAS  PubMed  Google Scholar 

  70. Prasad ML, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in Northeast United States. Cancer. 2016;122(7):1097–107.

    Article  CAS  PubMed  Google Scholar 

  71. Lazar L, et al. Differentiated thyroid carcinoma in pediatric patients: comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr. 2009;154(5):708–14.

    Article  PubMed  Google Scholar 

  72. Bal CS, et al. Is chest x-ray or high-resolution computed tomography scan of the chest sufficient investigation to detect pulmonary metastasis in pediatric differentiated thyroid cancer? Thyroid. 2004;14(3):217–25.

    Article  CAS  PubMed  Google Scholar 

  73. Chow SM, et al. Differentiated thyroid carcinoma in childhood and adolescence-clinical course and role of radioiodine. Pediatr Blood Cancer. 2004;42(2):176–83.

    Article  PubMed  Google Scholar 

  74. Jarzab B, Handkiewicz-Junak D. Differentiated thyroid cancer in children and adults: same or distinct disease? Hormones (Athens). 2007;6(3):200–9.

    Google Scholar 

  75. Machens A, et al. Papillary thyroid cancer in children and adolescents does not differ in growth pattern and metastatic behavior. J Pediatr. 2010;157(4):648–52.

    Article  PubMed  Google Scholar 

  76. Vriens MR, et al. Clinical and molecular features of papillary thyroid cancer in adolescents and young adults. Cancer. 2011;117(2):259–67.

    Article  CAS  PubMed  Google Scholar 

  77. Wada N, et al. Treatment strategy of papillary thyroid carcinoma in children and adolescents: clinical significance of the initial nodal manifestation. Ann Surg Oncol. 2009;16(12):3442–9.

    Article  PubMed  Google Scholar 

  78. Pawelczak M, et al. Outcomes of children and adolescents with well-differentiated thyroid carcinoma and pulmonary metastases following (1)(3)(1)I treatment: a systematic review. Thyroid. 2010;20(10):1095–101.

    Article  CAS  PubMed  Google Scholar 

  79. Hay ID, et al. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34(6):1192–202.

    Article  PubMed  Google Scholar 

  80. Hogan AR, et al. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156(1):167–72.

    Article  PubMed  Google Scholar 

  81. Handkiewicz-Junak D, et al. Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 2007;48(6):879–88.

    Article  CAS  PubMed  Google Scholar 

  82. Sugino K, et al. Papillary thyroid carcinoma in children and adolescents: long-term follow-up and clinical characteristics. World J Surg. 2015;39(9):2259–65.

    Article  PubMed  Google Scholar 

  83. Markovina S, et al. Treatment approach, surveillance, and outcome of well-differentiated thyroid cancer in childhood and adolescence. Thyroid. 2014;24(7):1121–6.

    Article  PubMed  Google Scholar 

  84. Cordioli MI, et al. Are we really at the dawn of understanding sporadic pediatric thyroid carcinoma? Endocr Relat Cancer. 2015;22(6):R311–24.

    Article  CAS  PubMed  Google Scholar 

  85. Xing M. BRAF mutation in papillary thyroid cancer: pathogenic role, molecular bases, and clinical implications. Endocr Rev. 2007;28(7):742–62.

    Article  CAS  PubMed  Google Scholar 

  86. Li C, et al. BRAF V600E mutation and its association with clinicopathological features of papillary thyroid cancer: a meta-analysis. J Clin Endocrinol Metab. 2012;97(12):4559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Penko K, et al. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid. 2005;15(4):320–5.

    Article  CAS  PubMed  Google Scholar 

  88. Rosenbaum E, et al. Mutational activation of BRAF is not a major event in sporadic childhood papillary thyroid carcinoma. Mod Pathol. 2005;18(7):898–902.

    Article  CAS  PubMed  Google Scholar 

  89. Ihle MA, et al. Comparison of high resolution melting analysis, pyrosequencing, next generation sequencing and immunohistochemistry to conventional sanger sequencing for the detection of p.V600E and non-p.V600E BRAF mutations. BMC Cancer. 2014;14:13.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Cancer Genome Atlas Research, N. Integrated genomic characterization of papillary thyroid carcinoma. Cell. 2014;159(3):676–90.

    Article  CAS  Google Scholar 

  91. Elsheikh TM, et al. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol. 2008;130(5):736–44.

    Article  PubMed  Google Scholar 

  92. Kesmodel SB, et al. The diagnostic dilemma of follicular variant of papillary thyroid carcinoma. Surgery. 2003;134(6):1005–12; discussion 1012.

    Article  PubMed  Google Scholar 

  93. Nikiforov YE, et al. Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2016;2(8):1023–9.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol. 2011;7(10):569–80.

    Article  CAS  PubMed  Google Scholar 

  95. Fryknas M, et al. Molecular markers for discrimination of benign and malignant follicular thyroid tumors. Tumour Biol. 2006;27(4):211–20.

    Article  PubMed  CAS  Google Scholar 

  96. DeLellis RA. Pathology and genetics of thyroid carcinoma. J Surg Oncol. 2006;94(8):662–9.

    Article  CAS  PubMed  Google Scholar 

  97. Dionigi G, et al. Minimally invasive follicular thyroid cancer (MIFTC)—a consensus report of the European Society of Endocrine Surgeons (ESES). Langenbeck’s Arch Surg. 2014;399(2):165–84.

    Article  Google Scholar 

  98. O'Gorman CS, et al. Thyroid cancer in childhood: a retrospective review of childhood course. Thyroid. 2010;20(4):375–80.

    Article  PubMed  Google Scholar 

  99. Alfalah H, et al. Risk factors for lateral cervical lymph node involvement in follicular thyroid carcinoma. World J Surg. 2008;32(12):2623–6.

    Article  PubMed  Google Scholar 

  100. Ito Y, et al. Prognostic significance of patient age in minimally and widely invasive follicular thyroid carcinoma: investigation of three age groups. Endocr J. 2014;61(3):265–71.

    Article  PubMed  Google Scholar 

  101. Sugino K, et al. Prognosis and prognostic factors for distant metastases and tumor mortality in follicular thyroid carcinoma. Thyroid. 2011;21(7):751–7.

    Article  PubMed  Google Scholar 

  102. Lin JD, et al. Operative strategy for follicular thyroid cancer in risk groups stratified by pTNM staging. Surg Oncol. 2007;16(2):107–13.

    Article  PubMed  Google Scholar 

  103. Enomoto K, et al. Follicular thyroid cancer in children and adolescents: clinicopathologic features, long-term survival, and risk factors for recurrence. Endocr J. 2013;60(5):629–35.

    Article  PubMed  Google Scholar 

  104. Sosa JA, et al. Clinical and economic outcomes of thyroid and parathyroid surgery in children. J Clin Endocrinol Metab. 2008;93(8):3058–65.

    Article  CAS  PubMed  Google Scholar 

  105. Tuggle CT, et al. Pediatric endocrine surgery: who is operating on our children? Surgery. 2008;144(6):869–77; discussion 877.

    Article  PubMed  Google Scholar 

  106. Biondi B, Filetti S, Schlumberger M. Thyroid-hormone therapy and thyroid cancer: a reassessment. Nat Clin Pract Endocrinol Metab. 2005;1(1):32–40.

    Article  CAS  PubMed  Google Scholar 

  107. Lazar L, et al. Pediatric thyroid cancer: postoperative classifications and response to initial therapy as prognostic factors. J Clin Endocrinol Metab. 2016;101(5):1970–9.

    Article  CAS  PubMed  Google Scholar 

  108. Pires B, et al. Prognostic factors for early and long-term remission in pediatric differentiated thyroid cancer: the role of gender, age, clinical presentation and the newly proposed American Thyroid Association risk stratification system. Thyroid. 2016;26(10):1480–7.

    Article  CAS  PubMed  Google Scholar 

  109. Bargren AE, et al. Outcomes of surgically managed pediatric thyroid cancer. J Surg Res. 2009;156(1):70–3.

    Article  PubMed  Google Scholar 

  110. Thompson GB, Hay ID. Current strategies for surgical management and adjuvant treatment of childhood papillary thyroid carcinoma. World J Surg. 2004;28(12):1187–98.

    Article  PubMed  Google Scholar 

  111. Bilimoria KY, et al. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 2007;246(3):375–81; discussion 381-4

    Article  PubMed  PubMed Central  Google Scholar 

  112. Grodski S, Serpell J. Evidence for the role of perioperative PTH measurement after total thyroidectomy as a predictor of hypocalcemia. World J Surg. 2008;32(7):1367–73.

    Article  PubMed  Google Scholar 

  113. Sam AH, et al. Serum phosphate predicts temporary hypocalcaemia following thyroidectomy. Clin Endocrinol. 2011;74(3):388–93.

    Article  CAS  Google Scholar 

  114. Freire AV, et al. Predicting hypocalcemia after thyroidectomy in children. Surgery. 2014;156(1):130–6.

    Article  PubMed  Google Scholar 

  115. Golpanian S, et al. Pediatric papillary thyroid carcinoma: outcomes and survival predictors in 2504 surgical patients. Pediatr Surg Int. 2016;32(3):201–8.

    Article  PubMed  Google Scholar 

  116. Chapter 8. Thyroid. In: Edge SB et al., editors. AJCC cancer staging manual. 7th ed. New York: Springer; 2010. p. 87–96.

    Google Scholar 

  117. Rosario PW, et al. The value of diagnostic whole-body scanning and serum thyroglobulin in the presence of elevated serum thyrotropin during follow-up of anti-thyroglobulin antibody-positive patients with differentiated thyroid carcinoma who appeared to be free of disease after total thyroidectomy and radioactive iodine ablation. Thyroid. 2012;22(2):113–6.

    Article  CAS  PubMed  Google Scholar 

  118. Luster M, et al. Recombinant thyrotropin use in children and adolescents with differentiated thyroid cancer: a multicenter retrospective study. J Clin Endocrinol Metab. 2009;94(10):3948–53.

    Article  CAS  PubMed  Google Scholar 

  119. Handkiewicz-Junak D, et al. Recombinant human thyrotropin preparation for adjuvant radioiodine treatment in children and adolescents with differentiated thyroid cancer. Eur J Endocrinol. 2015;173(6):873–81.

    Article  CAS  PubMed  Google Scholar 

  120. Sohn SY, et al. The impact of iodinated contrast agent administered during preoperative computed tomography scan on body iodine pool in patients with differentiated thyroid cancer preparing for radioactive iodine treatment. Thyroid. 2014;24(5):872–7.

    Article  CAS  PubMed  Google Scholar 

  121. Schoelwer MJ, et al. The use of 123I in diagnostic radioactive iodine scans in children with differentiated thyroid carcinoma. Thyroid. 2015;25(8):935–41.

    Article  CAS  PubMed  Google Scholar 

  122. Cohen JB, Kalinyak JE, McDougall IR. Clinical implications of the differences between diagnostic 123I and post-therapy 131I scans. Nucl Med Commun. 2004;25(2):129–34.

    Article  PubMed  Google Scholar 

  123. Xue YL, et al. Value of (1)(3)(1)I SPECT/CT for the evaluation of differentiated thyroid cancer: a systematic review of the literature. Eur J Nucl Med Mol Imaging. 2013;40(5):768–78.

    Article  CAS  PubMed  Google Scholar 

  124. Lee JI, et al. Postoperative-stimulated serum thyroglobulin measured at the time of 131I ablation is useful for the prediction of disease status in patients with differentiated thyroid carcinoma. Surgery. 2013;153(6):828–35.

    Article  PubMed  Google Scholar 

  125. Hung W, Sarlis NJ. Current controversies in the management of pediatric patients with well-differentiated nonmedullary thyroid cancer: a review. Thyroid. 2002;12(8):683–702.

    Article  PubMed  Google Scholar 

  126. Dinauer C, Francis GL. Thyroid cancer in children. Endocrinol Metab Clin N Am. 2007;36(3):779–806. vii

    Article  CAS  Google Scholar 

  127. Jarzab B, Handkiewicz-Junak D, Wloch J. Juvenile differentiated thyroid carcinoma and the role of radioiodine in its treatment: a qualitative review. Endocr Relat Cancer. 2005;12(4):773–803.

    Article  CAS  PubMed  Google Scholar 

  128. Lassmann M, et al. The use of dosimetry in the treatment of differentiated thyroid cancer. Q J Nucl Med Mol Imaging. 2011;55(2):107–15.

    CAS  PubMed  Google Scholar 

  129. Urhan M, et al. Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: a comparison with iodine-131 post-treatment scanning and serum thyroglobulin measurement. Eur J Nucl Med Mol Imaging. 2007;34(7):1012–7.

    Article  CAS  PubMed  Google Scholar 

  130. Kim HY, Gelfand MJ, Sharp SE. SPECT/CT imaging in children with papillary thyroid carcinoma. Pediatr Radiol. 2011;41(8):1008–12.

    Article  PubMed  Google Scholar 

  131. Sawka AM, et al. A systematic review of the gonadal effects of therapeutic radioactive iodine in male thyroid cancer survivors. Clin Endocrinol. 2008;68(4):610–7.

    Article  Google Scholar 

  132. Sawka AM, et al. A systematic review examining the effects of therapeutic radioactive iodine on ovarian function and future pregnancy in female thyroid cancer survivors. Clin Endocrinol. 2008;69(3):479–90.

    Article  Google Scholar 

  133. Pacini F, et al. Testicular function in patients with differentiated thyroid carcinoma treated with radioiodine. J Nucl Med. 1994;35(9):1418–22.

    CAS  PubMed  Google Scholar 

  134. Verburg FA, et al. Dosimetry-guided high-activity (131)I therapy in patients with advanced differentiated thyroid carcinoma: initial experience. Eur J Nucl Med Mol Imaging. 2010;37(5):896–903.

    Article  PubMed  Google Scholar 

  135. Marti JL, Jain KS, Morris LG. Increased risk of second primary malignancy in pediatric and young adult patients treated with radioactive iodine for differentiated thyroid cancer. Thyroid. 2015;25(6):681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Brown AP, et al. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93(2):504–15.

    Article  CAS  PubMed  Google Scholar 

  137. Klubo-Gwiezdzinska J, et al. Salivary gland malignancy and radioiodine therapy for thyroid cancer. Thyroid. 2010;20(6):647–51.

    Article  CAS  PubMed  Google Scholar 

  138. Verburg FA, et al. Implications of thyroglobulin antibody positivity in patients with differentiated thyroid cancer: a clinical position statement. Thyroid. 2013;23(10):1211–25.

    Article  PubMed  Google Scholar 

  139. Netzel BC, et al. Thyroglobulin (Tg) testing revisited: Tg assays, TgAb assays, and correlation of results with clinical outcomes. J Clin Endocrinol Metab. 2015;100(8):E1074–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Spencer CA. Clinical utility of thyroglobulin antibody (TgAb) measurements for patients with differentiated thyroid cancers (DTC). J Clin Endocrinol Metab. 2011;96(12):3615–27.

    Article  CAS  PubMed  Google Scholar 

  141. Spencer C, LoPresti J, Fatemi S. How sensitive (second-generation) thyroglobulin measurement is changing paradigms for monitoring patients with differentiated thyroid cancer, in the absence or presence of thyroglobulin autoantibodies. Curr Opin Endocrinol Diabetes Obes. 2014;21(5):394–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Bannas P, et al. Can (18)F-FDG-PET/CT be generally recommended in patients with differentiated thyroid carcinoma and elevated thyroglobulin levels but negative I-131 whole body scan? Ann Nucl Med. 2012;26(1):77–85.

    Article  CAS  PubMed  Google Scholar 

  143. Francis GL, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on pediatric thyroid cancer. Thyroid. 2015;25(7):716–59.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Hay ID, et al. Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period. Surgery. 2008;144(6):980–7; discussion 987-8.

    Article  PubMed  Google Scholar 

  145. Clayman GL, et al. Long-term outcome of comprehensive central compartment dissection in patients with recurrent/persistent papillary thyroid carcinoma. Thyroid. 2011;21(12):1309–16.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Clayman GL, et al. Approach and safety of comprehensive central compartment dissection in patients with recurrent papillary thyroid carcinoma. Head Neck. 2009;31(9):1152–63.

    Article  PubMed  Google Scholar 

  147. Hay ID, et al. Long-term outcome of ultrasound-guided percutaneous ethanol ablation of selected “recurrent” neck nodal metastases in 25 patients with TNM stages III or IVA papillary thyroid carcinoma previously treated by surgery and 131I therapy. Surgery. 2013;154(6):1448–54; discussion 1454-5

    Article  PubMed  Google Scholar 

  148. Shin JE, Baek JH, Lee JH. Radiofrequency and ethanol ablation for the treatment of recurrent thyroid cancers: current status and challenges. Curr Opin Oncol. 2013;25(1):14–9.

    Article  CAS  PubMed  Google Scholar 

  149. Heilo A, et al. Efficacy of ultrasound-guided percutaneous ethanol injection treatment in patients with a limited number of metastatic cervical lymph nodes from papillary thyroid carcinoma. J Clin Endocrinol Metab. 2011;96(9):2750–5.

    Article  CAS  PubMed  Google Scholar 

  150. Biko J, et al. Favourable course of disease after incomplete remission on (131)I therapy in children with pulmonary metastases of papillary thyroid carcinoma: 10 years follow-up. Eur J Nucl Med Mol Imaging. 2011;38(4):651–5.

    Article  PubMed  Google Scholar 

  151. Padovani RP, et al. Even without additional therapy, serum thyroglobulin concentrations often decline for years after total thyroidectomy and radioactive remnant ablation in patients with differentiated thyroid cancer. Thyroid. 2012;22(8):778–83.

    Article  CAS  PubMed  Google Scholar 

  152. Frank RW, et al. Conservative management of thyroglobulin-positive, nonlocalizable thyroid carcinoma. Head Neck. 2013;36(2):155–7.

    Article  PubMed  Google Scholar 

  153. Rosario PW, et al. Is empirical radioactive iodine therapy still a valid approach to patients with thyroid cancer and elevated thyroglobulin? Thyroid. 2014;24(3):533–6.

    Article  CAS  PubMed  Google Scholar 

  154. Kim WG, et al. Empiric high-dose 131-iodine therapy lacks efficacy for treated papillary thyroid cancer patients with detectable serum thyroglobulin, but negative cervical sonography and 18F-fluorodeoxyglucose positron emission tomography scan. J Clin Endocrinol Metab. 2010;95(3):1169–73.

    Article  CAS  PubMed  Google Scholar 

  155. Robbins RJ, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505.

    Article  CAS  PubMed  Google Scholar 

  156. Covell LL, Ganti AK. Treatment of advanced thyroid cancer: role of molecularly targeted therapies. Target Oncol. 2015;10(3):311–24.

    Article  PubMed  Google Scholar 

  157. Brose MS, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Schlumberger M, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621–30.

    Article  PubMed  CAS  Google Scholar 

  159. Weitzman SP, Cabanillas ME. The treatment landscape in thyroid cancer: a focus on cabozantinib. Cancer Manag Res. 2015;7:265–78.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Kim A, et al. Phase 2 trial of sorafenib in children and young adults with refractory solid tumors: a report from the Children's oncology group. Pediatr Blood Cancer. 2015;62(9):1562–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Iyer P, Mayer JL, Ewig JM. Response to sorafenib in a pediatric patient with papillary thyroid carcinoma with diffuse nodular pulmonary disease requiring mechanical ventilation. Thyroid. 2014;24(1):169–74.

    Article  CAS  PubMed  Google Scholar 

  162. Waguespack SG, et al. The successful use of sorafenib to treat pediatric papillary thyroid carcinoma. Thyroid. 2009;19(4):407–12.

    Article  CAS  PubMed  Google Scholar 

  163. Ho AL, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wells SA Jr, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid. 2015;25(6):567–610.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Waguespack SG, et al. Management of medullary thyroid carcinoma and MEN2 syndromes in childhood. Nat Rev Endocrinol. 2011;7(10):596–607.

    Article  CAS  PubMed  Google Scholar 

  166. Margraf RL, et al. Multiple endocrine neoplasia type 2 RET protooncogene database: repository of MEN2-associated RET sequence variation and reference for genotype/phenotype correlations. Hum Mutat. 2009;30(4):548–56.

    Article  CAS  PubMed  Google Scholar 

  167. Frank-Raue K, Raue F. Hereditary medullary thyroid cancer genotype-phenotype correlation. Recent Results Cancer Res. 2015;204:139–56.

    Article  PubMed  Google Scholar 

  168. Leboulleux S, et al. Medullary thyroid carcinoma as part of a multiple endocrine neoplasia type 2B syndrome: influence of the stage on the clinical course. Cancer. 2002;94(1):44–50.

    Article  CAS  PubMed  Google Scholar 

  169. Machens A, et al. Prospects of remission in medullary thyroid carcinoma according to basal calcitonin level. J Clin Endocrinol Metab. 2005;90(4):2029–34.

    Article  CAS  PubMed  Google Scholar 

  170. Meijer JA, et al. Radioactive iodine in the treatment of medullary thyroid carcinoma: a controlled multicenter study. Eur J Endocrinol. 2013;168(5):779–86.

    Article  CAS  PubMed  Google Scholar 

  171. Brauckhoff M, et al. Premonitory symptoms preceding metastatic medullary thyroid cancer in MEN 2B: an exploratory analysis. Surgery. 2008;144(6):1044–50. discussion 1050-3

    Article  PubMed  Google Scholar 

  172. Laure Giraudet A, et al. Progression of medullary thyroid carcinoma: assessment with calcitonin and carcinoembryonic antigen doubling times. Eur J Endocrinol. 2008;158(2):239–46.

    Article  PubMed  CAS  Google Scholar 

  173. Fox E, et al. Vandetanib in children and adolescents with multiple endocrine neoplasia type 2B associated medullary thyroid carcinoma. Clin Cancer Res. 2013;19(15):4239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Bauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, Y.A., Bauer, A.J. (2019). Thyroid Cancer in Children and Adolescents. In: Luster, M., Duntas, L., Wartofsky, L. (eds) The Thyroid and Its Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72102-6_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72102-6_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72100-2

  • Online ISBN: 978-3-319-72102-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics