Skip to main content

Imaging of Differentiated Thyroid Cancer with Iodine-124 and F-18-FDG

  • Chapter
  • First Online:
  • 2835 Accesses

Abstract

Positron emission tomography (PET) is an established imaging device in oncological clinical setting using several isotope-labeled compounds of which I-124 and F-18-labeled fluorodeoxyglucose (FDG) are the most relevant ones for imaging of patients with differentiated thyroid cancer (DTC). Whereas I-124 PET is applied to identify thyroid cancer cells expressing the sodium-iodine symporter (NIS) which is correlated to a well-differentiated phenotype, F-18-FDG PET reveals thyroid cancer cells with a higher level of dedifferentiated feature with a more aggressive phenotype. Besides imaging NIS, I-124 PET enables a dosimetry approach to calculate radiation doses delivered to target lesions. In this chapter, we discuss the role of these two imaging techniques in thyroid cancer patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jentzen W, Freudenberg LS, Bockisch A. Quantitative imaging of 124I with PET/CT in pretherapy lesion dosimetry effects impairing image quantification and their corrections. Q J Nucl Med Mol Imaging. 2011;55:21–43.

    CAS  PubMed  Google Scholar 

  2. Jentzen W, Hoppenbrouwers J, van Leeuwen P, et al. Assessment of lesion response in the initial radioiodine treatment of differentiated thyroid cancer using 124I PET imaging. J Nucl Med. 2014;55(11):1759–65. https://doi.org/10.2967/jnumed.114.144089.

    Article  CAS  PubMed  Google Scholar 

  3. Van Nostrand D, Moreau S, Bandaru VV, et al. 124I Positron emission tomography versus 131I planar imaging in the identification of residual thyroid tissue and/or metastasis in patients who have well-differentiated thyroid cancer. Thyroid. 2010;20(8):879–83. https://doi.org/10.1089/thy.2009.0430.

    Article  PubMed  Google Scholar 

  4. Furhang E, Larson SM, Buranapong P, Humm JL. Thyroid cancer dosimetry using clearance fitting. J Nucl Med. 1999;40:131–6.

    CAS  PubMed  Google Scholar 

  5. Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med. 2008;49(6):1017–23. https://doi.org/10.2967/jnumed.107.047159.

    Article  PubMed  Google Scholar 

  6. Freudenberg L, Jentzen W, Görges R, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin. 2007;46(4):121–8. https://doi.org/10.1160/nukmed-0076.

    Article  CAS  PubMed  Google Scholar 

  7. Pettinato C, Spezi E, Nanni C, et al. Pretherapeutic dosimetry in patients affected by metastatic thyroid cancer using 124I PET/CT sequential scans for 131I treatment planning. Clin Nucl Med. 2014;39(8):e367–74. https://doi.org/10.1097/RLU.0000000000000490.

    Article  PubMed  Google Scholar 

  8. Khorjekar GR, Van Nostrand D, Garcia C, et al. Do negative 124I pretherapy positron emission tomography scans in patients with elevated serum thyroglobulin levels predict negative 131I posttherapy scans? Thyroid. 2014;24(9):1394–9. https://doi.org/10.1089/thy.2013.0713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ruhlmann M, Jentzen W, Ruhlmann V, et al. High level of agreement between pretherapeutic 124I PET and intratherapeutic 131I images in detecting iodine-positive thyroid cancer metastases. J Nucl Med. 2016. https://doi.org/10.2967/jnumed.115.169649.

    Article  CAS  PubMed  Google Scholar 

  10. Ho AL, Grewal RK, Leboeuf R, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623–32. https://doi.org/10.1056/NEJMoa1209288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chakravarty D, Santos E, Ryder M, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest. 2011;121(12):4700–11. https://doi.org/10.1172/JCI46382DS1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nagarajah J, Jentzen W, Hartung V, et al. Diagnosis and dosimetry in differentiated thyroid carcinoma using 124I PET: comparison of PET/MRI vs PET/CT of the neck. Eur J Nucl Med Mol Imaging. 2011;38(10):1862–8. https://doi.org/10.1007/s00259-011-1866-1.

    Article  CAS  PubMed  Google Scholar 

  13. Feine U, Lietzenmayer R, Hanke J-P, Held J, Wöhrle H, Müller-Schauenburg W. Fluorine- 18-FDG and iodine- 13 1-iodide uptake in thyroid cancer. J Nucl Med. 1996;37:1468–72.

    CAS  PubMed  Google Scholar 

  14. Hong CM, Ahn BC, Jeong SY, Lee SW, Lee J. Distant metastatic lesions in patients with differentiated thyroid carcinoma. Nuklearmedizin. 2013;52(4):121–9. https://doi.org/10.3413/Nukmed-0541-12-11.

    Article  CAS  PubMed  Google Scholar 

  15. Robbins RJ, Wan Q, Grewal RK, et al. Real-time prognosis for metastatic thyroid carcinoma based on 2-[ 18F]Fluoro-2-deoxy- d-glucose-positron emission tomography scanning. J Clin Endocrinol Metab. 2006;91(2):498–505. https://doi.org/10.1210/jc.2005-1534.

    Article  CAS  PubMed  Google Scholar 

  16. Rivera M, Ghossein RA, Schöder H, Gomez D, Larson SM, Tuttle RM. Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma. Cancer. 2008;113(1):48–56. https://doi.org/10.1002/cncr.23515.

    Article  PubMed  Google Scholar 

  17. Grabellus F, Nagarajah J, Bockisch A, Schmid KW, Sheu S-Y. Glucose transporter 1 expression, tumor proliferation, and iodine/glucose uptake in thyroid cancer with emphasis on poorly differentiated thyroid carcinoma. Clin Nucl Med. 2012;37(2):121–7. https://doi.org/10.1097/RLU.0b013e3182393599.

    Article  PubMed  Google Scholar 

  18. Xing M. Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA. 2013;309(14):1493. https://doi.org/10.1001/jama.2013.3190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagarajah J, Ho AL, Tuttle RM, Weber WA, Grewal RK. Correlation of BRAFV600E mutation and glucose metabolism in thyroid cancer patients: an 18F-FDG PET study. J Nucl Med. 2015;56(5):662–7. https://doi.org/10.2967/jnumed.114.150607.

    Article  CAS  PubMed  Google Scholar 

  20. Rosenbaum-Krumme SJ, Görges R, Bockisch A, Binse I. 18F-FDG PET/CT changes therapy management in high-risk DTC after first radioiodine therapy. Eur J Nucl Med Mol Imaging. 2012;39(9):1373–80. https://doi.org/10.1007/s00259-012-2065-4.

    Article  PubMed  Google Scholar 

  21. Wang W, Larson SM, Fazzari M, et al. Prognostic value of [18F]Fluorodeoxyglucose positron emission tomographic scanning in patients with thyroid cancer. J Clin Endocrinol Metab. 2000;85(3):1–7.

    Google Scholar 

  22. Helal OB, Merlet P, Toubert M-E, et al. Clinical impact of 18F-FDG PET in thyroid carcinoma patients with elevated thyroglobulin levels and negative 131I scanning results after therapy. J Nucl Med. 2001;42:1464–9.

    CAS  PubMed  Google Scholar 

  23. Schlüter B, Bohuslavizki KH, Beyer W, Plotkin M, Buchert R, Clausen M. Impact of FDG PET on patients with differentiated thyroid cancer who present with elevated thyroglobulin and negative 131I scan. J Nucl Med. 2001;42:71–6.

    PubMed  Google Scholar 

  24. Riesco-Eizaguirre G, Santisteban P. New insights in thyroid follicular cell biology and its impact in thyroid cancer therapy. Endocr Relat Cancer. 2007;14(4):957–77. https://doi.org/10.1677/ERC-07-0085.

    Article  CAS  PubMed  Google Scholar 

  25. Ma C, Xie J, Lou Y, Gao Y, Zuo S, Wang X. The role of TSH for 18F-FDG-PET in the diagnosis of recurrence and metastases of differentiated thyroid carcinoma with elevated thyroglobulin and negative scan: a meta-analysis. Eur J Endocrinol. 2010;163(2):177–83. https://doi.org/10.1530/EJE-10-0256.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Nagarajah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagarajah, J., Jentzen, W., Stebner, V., Binse, I., Janssen, M., Grewal, R.K. (2019). Imaging of Differentiated Thyroid Cancer with Iodine-124 and F-18-FDG. In: Luster, M., Duntas, L., Wartofsky, L. (eds) The Thyroid and Its Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72102-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72102-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72100-2

  • Online ISBN: 978-3-319-72102-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics