Skip to main content

Chytridiomycosis

  • Chapter
  • First Online:

Abstract

The amphibian fungal disease chytridiomycosis is considered one of the greatest threats to biodiversity. This lethal skin disease is caused by chytridiomycete fungi belonging to the genus Batrachochytrium. Although sudden amphibian population declines had occurred since the 1970s in the Americas and Australia, mass mortalities were not observed until the 1990s. The fungus Batrachochytrium dendrobatidis (Bd) was identified as the cause of these declines. It is estimated that Bd has caused the rapid decline or extinction of at least 200 amphibian species, which is probably an underestimation due to the cryptic behaviour of many amphibians such as many salamanders and also the lack of monitoring. A second chytrid species, B. salamandrivorans (Bsal), has recently emerged and caused mass mortality in salamanders in Belgium, the Netherlands and Germany, affecting most salamander and newt taxa in the amphibian community and is considered a major threat to the western Palearctic amphibian biodiversity. In this chapter we review the epidemiology, host pathogen interactions and mitigation strategies of both chytrid pathogens.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramyan J, Stajich JE (2012) Species-specific chitin binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis. MBio 3:e00150–e00112

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Annis SL, Dastoor FP, Ziel H et al (2004) A DNA-based assay identifies Batrachochytrium dendrobatidis in amphibians. J Wildl Dis 40:420–428

    Article  PubMed  CAS  Google Scholar 

  • Bataille A, Cashins SD, Grogan L et al (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc Biol Sci 22:282

    Google Scholar 

  • Beard KH, O’Neill EM (2005) Infection of an invasive frog Eleutherodactylus coqui by the chytrid fungus Batrachochytrium dendrobatidis in Hawaii. Biol Conserv 126:591–595

    Article  Google Scholar 

  • Becker MH, Brucker RM, Schwantes CR et al (2009) The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microbiol 75:6635–6638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berger L, Skerratt L (2012) Disease strategy chytridiomycosis (infection with Batrachochytrium dendrobatidis) Version 1, 2012. Department of Sustainability, Environment, Water, Populations and Communities, Public Affairs, Commonwealth of Australia, Canberra. Available at: http://www.environment.gov.au/system/files/resources/387d3e66-3cdc-4676-8fed-759328277da4/files/chytrid-fungus-manual.pdf

  • Berger L, Speare R, Daszak P et al (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci U S A 95:9031–9036

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berger L, Speare R, Kent A (2000) Diagnosis of chytridiomycosis in amphibians by histological examination. Zoos Print J 15:184–190

    Article  Google Scholar 

  • Berger L, Hyatt AD, Olsen V et al (2002) Production of polyclonal antibodies to Batrachochytrium dendrobatidis and their use in an immunoperoxidase test for chytridiomycosis in amphibians. Dis Aquat Org 48:213–220

    Article  CAS  Google Scholar 

  • Berger L, Speare R, Hines HB et al (2004) Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust Vet J 82:434–439

    Article  PubMed  CAS  Google Scholar 

  • Berger L, Hyatt AD, Speare R et al (2005) Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Org 68:51–63

    Article  Google Scholar 

  • Berger L, Longcore J, Speare R, Hyatt A, Skerratt LF (2009) Fungal diseases in amphibians. In: Heatwole H, Wilkinson JW (eds) Amphibian biology, volume 8 amphibian decline: disease, parasites, maladies, and pollution. Surrey Beatty and Sons, Baulkham Hills, NSW, pp 2986–3052

    Google Scholar 

  • Blaustein AR, Romansic JM, Scheessele EA et al (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol 19:1460–1146

    Article  Google Scholar 

  • Blooi M, Pasmans F, Longcore JE et al (2013) Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. J Clin Microbiol 51:4173–4177

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blooi M, Martel A, Haesebrouck F et al (2015a) Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans. Sci Rep 5:8037

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blooi M, Pasmans F, Rouffaer L et al (2015b) Succesful treatment of Batrachochytrium salamandrivorans infections in salamanders requires synergy between voriconazole, polymyxin E and temperature. Sci Rep 5:11788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blooi M, Pasmans F, Longcore JE et al (2016) Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. J Clin Microbiol 54:246–246

    Article  PubMed  CAS  Google Scholar 

  • Bosch J, Martínez-Solano I, García-París M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol Conserv 97:331–337

    Article  Google Scholar 

  • Bosch J, Sanchez-Tome E, Fernandez-Loras A et al (2015) Successful elimination of a lethal wildlife infectious disease in nature. Biol Lett 11(11):20150874

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boyle DG, Boyle DB, Olsen V et al (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:141–148

    Article  CAS  Google Scholar 

  • Brannelly LA, Richards-Zawacki CL et al (2012) Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians. Dis Aquat Org 101:95–104

    Article  CAS  Google Scholar 

  • Brannelly LA, Hunter DA, Skerratt LF et al (2015) Chytrid infection and post-release fitness in the reintroduction of an endangered alpine tree frog. Anim Conserv 19(2):153–162. https://doi.org/10.1111/acv.12230

    Article  Google Scholar 

  • Brucker RM, Harris RN, Schwantes CR et al (2008) Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 34:1422–1429

    Article  PubMed  CAS  Google Scholar 

  • Brutyn M, D’Herde K, Dhaenens M et al (2012) Batrachochytrium dendrobatidis zoospore secretions rapidly disturb intercellular junctions in frog skin. Fungal Genet Biol 49:830–837

    Article  PubMed  Google Scholar 

  • Campbell CR, Voyles J, Cook DI et al (2012) Frog skin epithelium: electrolyte transport and chytridiomycosis. Int J Biochem Cell Biol 44:431–434

    Article  PubMed  CAS  Google Scholar 

  • Cashins SD, Grogan LF, McFadden M et al (2013) Prior infection does not improve survival against the amphibian disease Chytridiomycosis. PLoS One 8:e56747

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chatfield MWH, Richards-Zawacki CL (2011) Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs. Dis Aquat Org 94:235–238

    Article  Google Scholar 

  • Cheng TL, Rovito SM, Wake DB et al (2011) Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci U S A 108:9502–9507

    Article  PubMed  PubMed Central  Google Scholar 

  • Cunningham AA, Beckmann K, Perkins M et al (2015) Surveillance emerging disease in UK amphibians. Vet Rec 176:468–468

    Article  PubMed  Google Scholar 

  • Daskin JH, Alford RA, Puschendorf R (2011) Short-term exposure to warm microhabitats could explain amphibian persistence with Batrachochytrium dendrobatidis. PLoS One 6:e26215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davis AK, Keel MK, Ferreira A et al (2010) Effects of chytridiomycosis on circulating white blood cell distributions of bullfrog larvae (Rana catesbeiana). Comp Clin Pathol 19:49–55

    Article  Google Scholar 

  • Doddington BJ, Bosch J, Oliver JA et al (2013) Context dependent amphibian host population response to an invading pathogen. Ecology 94:1795–1804

    Article  PubMed  Google Scholar 

  • Duellman WE, Trueb L (1994) Biology of amphibians. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Duffus ALJ (2009) Chytrid blinders: what other disease risks to amphibians are we missing? EcoHealth 6:335–339

    Article  PubMed  Google Scholar 

  • Ellison AR, Savage AE, DiRenzo GV et al (2014) Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki. G3 (Bethesda) 4:1275–1289

    Article  CAS  Google Scholar 

  • Ellison AR et al (2015) More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biol Evol 7:286–298. https://doi.org/10.1093/gbe/evu285

    Article  CAS  Google Scholar 

  • Farrer RA, Weinert LA, Bielby J et al (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci U S A 108:18732–18736

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farrer RA, Henk DA, Garner TWJ et al (2013) Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genet 9(8):e1003703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fellers GM, Green DE, Longcore JE (2001) Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa). Copeia 2001:945–953

    Article  Google Scholar 

  • Fisher MC, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310

    Article  PubMed  CAS  Google Scholar 

  • Fites JS, Ramsey JP, Holden WM et al (2013) The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science 342:366–369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fites JS, Reinert LK, Chappell TM et al (2014) Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis. Infect Immun 82:4698–4706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fong JJ, Cheng TL, Bataille A et al (2015) Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLoS One 10(3):e0115656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forzan MJ, Gunn H, Scott P (2008) Chytridiomycosis in an aquarium collection of frogs: diagnosis, treatment, and control. J Zoo Wildl Med 39:406–411

    Article  PubMed  Google Scholar 

  • Garland S, Wood J, Skerratt LF (2011) Comparison of sensitivity between real-time detection of a TaqMan assay for Batrachochytrium dendrobatidis and conventional detection. Dis Aquat Organ 94:101–105

    Article  PubMed  CAS  Google Scholar 

  • Garner TW, Perkins MW, Govindarajulu P et al (2006) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the north American bullfrog, Rana catesbeiana. Biol Lett 2:455–459

    Article  PubMed  PubMed Central  Google Scholar 

  • Garner TW, Garcia G, Carroll B et al (2009) Using itraconazole to clear Batrachochytrium dendrobatidis infection, and subsequent depigmentation of Alytes muletensis tadpoles. Dis Aquat Organ 83:257–260

    Article  PubMed  CAS  Google Scholar 

  • Geiger CC, Kupfer E, Schar S et al (2011) Elevated temperature clears chytrid fungus infections from tadpoles of the midwife toad, Alytes obstetricans. Amphibia-Reptilia 32:276–280

    Article  Google Scholar 

  • Georoff TA, Moore RP, Rodriguez C et al (2013) Efficacy of treatment and long-term follow-up of Batrachochytrium dendrobatidis PCR-positive anurans following itraconazole bath treatment. J Zoo Wildl Med 44:395–403

    Article  PubMed  Google Scholar 

  • Goka K, Yokoyama J, Une Y et al (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol Ecol 18(23):4757–4774

    Article  PubMed  CAS  Google Scholar 

  • Grant EHG, Muths E, Katz RA, et al (2016) Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies. USGS Report https://doi.org/10.3133/ofr20151233

  • Greenspan SE, Longcore JE, Calhoun AJ (2012) Host invasion by Batrachochytrium dendrobatidis: fungal and epidermal ultrastructure in model anurans. Dis Aquat Org 100:201–210

    Article  Google Scholar 

  • Grogan LF (2014) Understanding host and environmental factors in the immunology and epidemiology of chytridiomycosis in anuran populations in Australia. PhD thesis, James Cook University

    Google Scholar 

  • Grogan LF, Berger L, Rose K et al (2014) Surveillance for emerging biodiversity diseases of wildlife. PLoS Pathog 10:1–4

    Article  CAS  Google Scholar 

  • Harding KC, Hansen BJL, Goodman SJ (2005) Acquired immunity and stochasticity in epidemic intervals impede the evolution of host disease resistance. Am Nat 166:722–730

    Article  PubMed  Google Scholar 

  • Harris RN, Lauer A, Simon MA et al (2009a) Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis Aquat Org 83:11–16

    Article  Google Scholar 

  • Harris RN, Brucker RM, Walke JB et al (2009b) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824

    Article  PubMed  CAS  Google Scholar 

  • Heard GW, Thomas CD, Hodgson JA et al (2015) Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol Lett 18:853–863

    Article  PubMed  Google Scholar 

  • Heringstad B, Klemetsdal G, Steine T (2007) Selection responses for disease resistance in two selection experiments with Norwegian red cows. J Dairy Sci 90:2419–2426

    Article  PubMed  CAS  Google Scholar 

  • Hudson PJ, Dobson AP (1998) In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge University Press, Cambridge

    Google Scholar 

  • Hunter D, Osborne W, Marantelli G et al (1999) Implementation of a population augmentation project for remnant populations of the southern corroboree frog (Pseudophryne corroboree). In: Campbell A (ed) Declines and disappearances of Australian frogs. Environment Australia, Canberra

    Google Scholar 

  • Hyatt AD, Boyle DG, Olsen V et al (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Org 73:175–192

    Article  CAS  Google Scholar 

  • James TY, Kauf F, Schoch CL et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822

    Article  PubMed  CAS  Google Scholar 

  • Johnson ML, Berger L, Philips L et al (2003) Fungicidal effects of chemical disinfectans, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Org 57:255–260

    Article  CAS  Google Scholar 

  • Johnson PTJ, Hoverman JT (2014) Heterogeneous hosts: how variation in host size, behaviour and immunity affects parasite aggregation. J Anim Ecol 83:1103–1112

    Article  PubMed  Google Scholar 

  • Jones ME, Paddock D, Bender L et al (2012) Treatment of chytridiomycosis with reduced-dose itraconazole. Dis Aquat Org 99:243–249

    Article  CAS  Google Scholar 

  • Joneson S, Stajich JE, Shiu SH et al (2011) Genomic transition to pathogenicity in Chytrid fungi. PLoS Pathog 7:e1002338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kindermann C, Narayan EJ, Hero JM (2012) Urinary corticosterone metabolites and chytridiomycosis disease prevalence in a free-living population of male Stony Creek frogs (Litoria wilcoxii). Comp Biochem Physiol A 162:171–176

    Article  CAS  Google Scholar 

  • Kolby JE, Smith KM, Berger L et al (2014) First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade. PLoS One 9:e90750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kriger KM, Hines HB, Hyatt AD et al (2006) Techniques for detecting chytridiomycosis in wild frogs: comparing histology with real-time Taqman PCR. Dis Aquat Org 71:141–148

    Article  CAS  Google Scholar 

  • La Marca E, Lips KR, Lötters S et al (2005) Catastrophic population declines and extinctions in Neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37:190–201

    Article  Google Scholar 

  • Lam BA, Walke JB, Vredenburg VT et al (2010) Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv 143:529–531

    Article  Google Scholar 

  • Lam BA, Walton DB, Harris RN (2011) Motile zoospores of Batrachochytrium dendrobatidis move away from antifungal metabolites produced by amphibian skin bacteria. EcoHealth 8:36–45

    Article  PubMed  Google Scholar 

  • Lauer A et al (2007) Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia 3:630–640

    Article  Google Scholar 

  • Lips KR, Brem F, Brenes R et al (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci U S A 103:3165–3170

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lips KR, Diffendorfer J, Mendelson JR et al (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol 6:e72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu P, Stajich JE (2015) Characterization of the carbohydrate binding module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis. Fungal Genet Biol 77:31–39

    Article  PubMed  CAS  Google Scholar 

  • Longcore J, Pessier A, Nichols D (1999) Batrachochytrium dendrobatidis gen et sp nov, a chytrid pathogenic to amphibians. Mycologia 91:219–227

    Article  Google Scholar 

  • Loudon AH, Holland JA, Umile TP et al (2014) Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol 5:441

    Article  PubMed  PubMed Central  Google Scholar 

  • Marantelli G, Berger L, Speare R et al (2004) Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development. Pac Conserv Biol 10:173–179

    Article  Google Scholar 

  • Martel A, Van Rooij P, Vercauteren G et al (2011) Developing a safe antifungal treatment protocol to eliminate Batrachochytrium dendrobatidis from amphibians. Med Mycol 49:143–149

    Article  PubMed  CAS  Google Scholar 

  • Martel A, Spitzen-van der Sluijs A, Blooi M et al (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A 110:15325–15329

    Article  PubMed  PubMed Central  Google Scholar 

  • Martel A, Blooi M, Adriaensen C et al (2014) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McFadden M, Hobbs R, Marantelli G et al (2013) Captive management and breeding of the critically endangered southern corroboree frog (Pseudophryne corroboree) (Moore 1953) at Taronga and Melbourne zoos. Amphib Reptile Conserv 5:70–87

    Google Scholar 

  • McMahon TA, Rohr JR (2015) Transition of chytrid dungus infection from mouthparts to hind limbs during amphibian metamorphosis. EcoHealth 12:88–193

    Article  Google Scholar 

  • McMahon TA, Brannelly LA, Chatfield MWH et al (2013) Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in absence of infection. Proc Natl Acad Sci U S A 110:210–215

    Article  PubMed  Google Scholar 

  • McMahon TA, Sears BF, Venesky MD et al (2014) Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511:224–227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meng P, Yang S, Shen C et al (2013) The first salamander defensing antimicrobial peptide. PLoS One 8:e83044

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meyer W, Seegers U, Schnapper A et al (2007) Possible antimicrobial defense by free sugars on the epidermal surface of aquatic vertebrates. Aquat Biol 1:167–175

    Article  CAS  Google Scholar 

  • Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566

    Article  PubMed  Google Scholar 

  • Moss AS, Reddy NS, Dortaj IM et al (2008) Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia 100:1–5

    Article  PubMed  CAS  Google Scholar 

  • Muletz CR, Myers JM, Domangue RJ et al (2012) Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol Conserv 152:119–126

    Article  Google Scholar 

  • Murphy PJ, St-Hilaire S, Corn PS (2011) Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads. Dis Aquat Org 95:31–42

    Article  Google Scholar 

  • Murray KA, Skerratt LF, Garland S et al (2013) Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach. PLoS One 8(4):e61061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Myers JM, Ramsey JP, Blackman AL et al (2012) Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J Chem Ecol 38:958–965

    Article  PubMed  Google Scholar 

  • Newell DA, Goldingay RL, Brooks LO (2013) Population recovery following decline in an endangered stream-breeding frog (Mixophyes fleayi) from subtropical Australia. PLoS One 8:e58559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nichols DK, Lamirande EW, Pessier AP et al (2000) Experimental transmission and treatment of cutaneous chytridiomycosis in poison dart frogs (Dendrobates auratus and Dendrobates tinctorius). In: Proceedings of the Joint Conference of American Association of Zoo Veterinarians and International Association for Aquatic Animal Medicine, pp 42–44

    Google Scholar 

  • Nichols DK, Lamirande EW, Pessier AP et al (2001) Experimental transmission of cutaneous chytridiomycosis in dendrobatid frogs. J Wildl Dis 37:1–11

    Article  PubMed  CAS  Google Scholar 

  • Olson DH, Aanensen DM, Ronnenberg KL et al (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parris MJ, Beaudoin JG (2004) Chytridiomycosis impacts predator-prey interactions in larval amphibian communities. Oecologia 140:626–632

    Article  PubMed  Google Scholar 

  • Pask JD, Cary TL, Rollins-Smith LA (2013) Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis. J Exp Biol 216:2908–2916

    Article  PubMed  CAS  Google Scholar 

  • Pasmans F, Van Rooij P, Blooi M et al (2013) Resistance to chytridiomycosis in European plethodontid salamanders of the genus Speleomantes. PLoS One 8:e63639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pessier AP, Mendelson JR (2010) A manual for control of infectious diseases in amphibian survival assurance colonies and reintroduction programs. IUCN/SSC Conservation Breeding Specialist Group

    Google Scholar 

  • Pessier AP, Nichols DK, Longcore JE et al (1999) Cutaneous chytridiomycosis in poison dart frogs (Dendrobates spp.) and White's tree frogs (Litoria caerulea). J Vet Diagn Investig 11:194–199

    Article  CAS  Google Scholar 

  • Peterson JD, Steffen JE, Reinert LK et al (2013) Host stress response is important for the pathogenesis of the deadly amphibian disease, chytridiomycosis, in Litoria caerulea. PLoS One 8:e62146

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Phillott AD, Speare R, Hines HB et al (2010) Minimising exposure of amphibians to pathogens during field studies. Dis Aquat Org 92:175–185

    Article  CAS  Google Scholar 

  • Phillott AD, Grogan LF, Cashins SD et al (2013) Chytridiomycosis and seasonal mortality of tropical stream-associated frogs 15 years after introduction of Batrachochytrium dendrobatidis. Conserv Biol 27:1058–1068

    Article  PubMed  Google Scholar 

  • Pilliod DS, Muths E, Scherer RD et al (2010) Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv Biol 24:1259–1267

    Article  PubMed  Google Scholar 

  • Plehn M (1920) Neue Parasiten in Haut and Kiemen von Fischen. Ichthyochytrium und Mucophilus Zentralblatt für Bakteriologie und Parasitenkunde Abteilung, vol 1, pp 275–281

    Google Scholar 

  • Puschendorf R, Hoskin CJ, Cashins SD et al (2011) Environmental refuge from disease-driven amphibian extinction. Conserv Biol 25:956–964

    Article  PubMed  Google Scholar 

  • Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Dis Aquat Org 61:75–83

    Article  Google Scholar 

  • Ramsey JP, Reinert LK, Harper LK et al (2010) Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the south African clawed frog, Xenopus laevis. Infect Immun 78:3981–3992

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reeder NMM, Pessier AP, Vredenburg VT (2012) A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS One 7:e33567

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Retallick RWR, McCallum H, Speare R (2004) Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol 2:1965–1971

    Article  CAS  Google Scholar 

  • Ribas L, Li MS, Doddington BJ, Robert J et al (2009) Expression profiling the temperature-dependent amphibian response to infection by Batrachochytrium dendrobatidis. PLoS One 4:e8408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ricardo H (2006) Distribution and ecology of chytrid in Tasmania. Honours thesis, University of Tasmania

    Google Scholar 

  • Richards-Zawacki CL (2010) Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc R Soc Lond B Biol Sci 277:519–528

    Article  Google Scholar 

  • Rivas LR (1964) A reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotopic”. Syst Zool 13:42–43

    Article  Google Scholar 

  • Rodriguez D, Becker CG, Pupin NC et al (2014) Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol Ecol 23:774–787

    Article  PubMed  CAS  Google Scholar 

  • Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta 1788:1593–1599

    Article  PubMed  CAS  Google Scholar 

  • Rollins-Smith LA, Woodhams DC, Reinert LK et al (2006) Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Dev Comp Immunol 30:831–842

    Article  PubMed  CAS  Google Scholar 

  • Rollins-Smith LA, Ramsey JP, Pask JD et al (2011) Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol 51:552–562

    Article  PubMed  CAS  Google Scholar 

  • Rosenblum EB, Stajich JE, Maddox N et al (2008) Global gene expression profiles for life stages of the deadly amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci U S A 105:17034–17039

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenblum EB, Poorten TJ, Settles M et al (2009) Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection with the deadly chytrid fungus. PLoS One 4:e6494

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosenblum EB, Poorten TJ, Settles M et al (2012) Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Mol Ecol 21:3110–3120

    Article  PubMed  Google Scholar 

  • Rosenblum EB, James TY, Zamudio KR et al (2013) Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci U S A 110:9385–9390

    Article  PubMed  PubMed Central  Google Scholar 

  • Rovito SM, Parra-Olea G, Vasquez-Almazan CR et al (2009) Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. Proc Natl Acad Sci U S A 106:3231–3236

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowley JJL, Alford RA (2007) Behaviour of Australian rain forest stream frogs may affect the transmission of chytridiomycosis. Dis Aquat Org 77:1–9

    Article  Google Scholar 

  • Rowley JJL, Skerratt LF, Alford RA et al (2007) Retreat sites of rain forest stream frogs are not a reservoir for Batrachochytrium dendrobatidis in northern Queensland, Australia. Dis Aquat Organ 74:7–12

    Article  PubMed  Google Scholar 

  • Sabino-Pinto JS, Bletz M, Hendrix R et al (2015) First detection of the emerging fungal pathogen in Batrachochytrium salamandrivorans in Germany. Amphibia-Reptilia 36(4):411–416. https://doi.org/10.1163/15685381-00003008

    Article  Google Scholar 

  • Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci U S A 108:16705–16710

    Article  PubMed  PubMed Central  Google Scholar 

  • Scheele BC, Guarino F, Osbourne W et al (2014) Decline and re-expansion of an amphibian with high prevalence of chytrid fungus. Biol Conserv 170:86–91

    Article  Google Scholar 

  • Scheele BC, Hunter DA, Skerratt LF et al (2015) Low impact of chytridiomycosis on frog recruitment enables persistence in refuges despite high adult mortality. Biol Conserv 182:36–43

    Article  Google Scholar 

  • Schloegel LM, Ferreira CM, James TY et al (2010) The north American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim Conserv 13:53–61

    Article  Google Scholar 

  • Schloegel LM, Toledo LF, Longcore JE et al (2012) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 21:5162–5177

    Article  PubMed  Google Scholar 

  • Schmeller DS, Blooi M, Martel A et al (2014) Microscopic aquatic predatorsstrongly affect infection dynamics of a globally emerged pathogen. Curr Biol 24:176–180

    Article  PubMed  CAS  Google Scholar 

  • Searle CL, Gervasi SS, Hua J et al (2011) Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv Biol 25:965–974

    Article  PubMed  CAS  Google Scholar 

  • Sheafor B, Davidson EW, Parr L et al (2008) Antimicrobial peptide defenses in the salamander Ambystoma tigrinum, against emerging amphibian pathogens. J Wildl Dis 44:226–236

    Article  PubMed  CAS  Google Scholar 

  • Skerratt L, Speare R, Berger L (2011a) Mitigating the impact of diseases affecting biodiversity—retrospective on the outbreak investigation for chytridiomycosis. Ecohealth 7:S26

    Google Scholar 

  • Skerratt LF, Berger L, Hines HB et al (2008) Survey protocol for detecting chytridiomycosis in all Australian frog populations. Dis Aquat Org 80:85–94

    Article  Google Scholar 

  • Skerratt LF, Mendez D, McDonald KR et al (2011b) Validation of diagnostic tests in wildlife: the case of chytridiomycosis in wild amphibians. J Herpetol 45:444–450

    Article  Google Scholar 

  • Skerratt LF, Berger L, Clemann N et al (2016) Priorities for management of chytridiomycosis in Australia: saving frogs from extinction. Wildlife Res 43(2):105–120

    Article  Google Scholar 

  • Smith KG, Weldon C, Conradie W et al (2007) Relationships among size, development, and Batrachochytrium dendrobatidis infection in African tadpoles. Dis Aquat Organ 74:159–164

    Article  PubMed  Google Scholar 

  • Soto-Azat C, Clarke BT, Poynton JC (2010) Widespread historical presence of Batrachochytrium dendrobatidis in African pipid frogs. Divers Distrib 16:126–131

    Article  Google Scholar 

  • Stice MJ, Briggs CJ (2010) Immunization is ineffective at preventing infection and mortality due to the amphibian chytrid fungus Batrachochytrium dendrobatidis. J Wildl Dis 46:70–77

    Article  PubMed  Google Scholar 

  • Stockwell MP, Clulow J, Mahony MJ (2015a) Evidence of a salt refuge: chytrid infection loads are suppressed in hosts exposed to salt. Oecologia 177:901–910

    Article  PubMed  CAS  Google Scholar 

  • Stockwell MP, Storrie LJ, Pollard CJ et al (2015b) Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus. Conserv Biol 29:391–399

    Article  PubMed  Google Scholar 

  • Swei A, Rowley JJL, Rodder D et al (2011) Is chytridiomycosis an emerging infectious disease in Asia? PLoS One 6(8):e23179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Talley BL, Muletz CR, Vredenburg VT et al (2015) A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biol Conserv 182:254–261

    Article  Google Scholar 

  • Tamukai K, Une Y, Tominaga A et al (2011) Treatment of spontaneous chytridiomycosis in captive amphibians using itraconazole. J Vet Med Sci 73:155–159

    Article  PubMed  CAS  Google Scholar 

  • Tennessen JA, Woodhams DC, Chaurand P et al (2009) Variations in the expresses antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol 33:1247–1257

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thekkiniath JC, Zabet-Moghaddam M, San Francisco SK et al (2013) A novel subtilisin-like serine protease of Batrachochytrium dendrobatidis is induced by thyroid hormone and degrades antimicrobial peptides. Fungal Biol 117:451–461

    Article  PubMed  CAS  Google Scholar 

  • Tobler U, Schmidt BR (2010) Within- and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5:e10927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Une Y, Kadekaru S, Tamukai K et al (2008) First report of spontaneous chytridiomycosis in frogs in Asia. Dis Aquat Organ 82:157–160

    Article  PubMed  Google Scholar 

  • Van Ells T, Stanton J, Strieby A et al (2003) Use of immunohistochemistry to diagnose chytridiomycosis in dyeing poison dart frogs (Dendrobates tinctorius). J Wildl Dis 39:742–745

    Article  PubMed  Google Scholar 

  • Van Rooij P, Martel A, D’Herde K et al (2012) Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent. PLoS One 7:1–8

    Article  CAS  Google Scholar 

  • Van Rooij P, Martel A, Haesebrouck F et al (2015) Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Vet Res 46:137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Venesky MD, Mendelson JR, Sears BF et al (2012) Selecting for tolerance against pathogens and herbivores to enhance success of reintroduction and translocation. Conserv Biol 26:586–592

    Article  PubMed  Google Scholar 

  • Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of Chytridiomycosis, a Cause of Catastrophic Amphibian Declines. Science 326: 582–585.

    Article  PubMed  CAS  Google Scholar 

  • Vredenburg VT, Knapp RA, Tunstall TS et al (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Nat Acad Sci U S A 107:9689–9694

    Article  Google Scholar 

  • Vredenburg VT, Briggs CJ, Harris RN (2011) Host-pathogen dynamics of amphibian chytridiomycosis: the role of the skin microbiome in health and disease. In: Fungal diseases: an emerging threat to human, animal and plant health: workshop summary. National Academy Press, Washington

    Google Scholar 

  • Walker S, Bosch J, James TY et al (2008) Invasive pathogens threaten species recovery programs. Curr Biol 18:853–R854

    Article  CAS  Google Scholar 

  • Walker SF, Bosch J, Gomez V et al (2010) Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecol Lett 13(3):372–382

    Article  PubMed  Google Scholar 

  • Weldon C, du Preez LH, Hyatt AD et al (2004) Origin of the amphibian chytrid fungus. Emerg Infect Dis 10:2100–2105

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Dis Aquat Org 55:65–67

    Article  Google Scholar 

  • Woodhams DC, Ardipradja K, Alford RA et al (2007) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv 10:409–417

    Article  Google Scholar 

  • Woodhams DC, Bosch J, Briggs CJ et al (2011) Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool 8(1):8

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodhams DC, Bell SC, Kenyon N et al (2012a) Immune evasion or avoidance: fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata. Fungal Biol 116:1203–1211

    Article  PubMed  CAS  Google Scholar 

  • Woodhams DC, Geiger CC, Reinert LK et al (2012b) Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Dis Aquat Organ 98:11–25

    Article  PubMed  CAS  Google Scholar 

  • Woodward A, Berger L, Skerratt LF (2014) In vitro sensitivity of the amphibian pathogen Batrachochytrium dendrobatidis to antifungal therapeutics. Res Vet Sci 97:364–366

    Article  PubMed  CAS  Google Scholar 

  • Young S, Whitehorn P, Berger L et al (2014) Defects in host immune function in tree frogs with chronic chytridiomycosis. PLoS One 9:e107284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

LB was supported by the Australian Research Council (grant FT100100375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to An Martel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martel, A., Pasmans, F., Fisher, M.C., Grogan, L.F., Skerratt, L.F., Berger, L. (2018). Chytridiomycosis. In: Seyedmousavi, S., de Hoog, G., Guillot, J., Verweij, P. (eds) Emerging and Epizootic Fungal Infections in Animals. Springer, Cham. https://doi.org/10.1007/978-3-319-72093-7_14

Download citation

Publish with us

Policies and ethics