Advertisement

Chytridiomycosis

  • An Martel
  • Frank Pasmans
  • Matthew C. Fisher
  • Laura F. Grogan
  • Lee F. Skerratt
  • Lee Berger
Chapter

Abstract

The amphibian fungal disease chytridiomycosis is considered one of the greatest threats to biodiversity. This lethal skin disease is caused by chytridiomycete fungi belonging to the genus Batrachochytrium. Although sudden amphibian population declines had occurred since the 1970s in the Americas and Australia, mass mortalities were not observed until the 1990s. The fungus Batrachochytrium dendrobatidis (Bd) was identified as the cause of these declines. It is estimated that Bd has caused the rapid decline or extinction of at least 200 amphibian species, which is probably an underestimation due to the cryptic behaviour of many amphibians such as many salamanders and also the lack of monitoring. A second chytrid species, B. salamandrivorans (Bsal), has recently emerged and caused mass mortality in salamanders in Belgium, the Netherlands and Germany, affecting most salamander and newt taxa in the amphibian community and is considered a major threat to the western Palearctic amphibian biodiversity. In this chapter we review the epidemiology, host pathogen interactions and mitigation strategies of both chytrid pathogens.

Keywords

Batrachochytrium dendrobatidis B. salamandrivorans Chytridiomycota Chytridiomycosis Batracians Outbreak 

Notes

Acknowledgements

LB was supported by the Australian Research Council (grant FT100100375).

References

  1. Abramyan J, Stajich JE (2012) Species-specific chitin binding module 18 expansion in the amphibian pathogen Batrachochytrium dendrobatidis. MBio 3:e00150–e00112PubMedPubMedCentralCrossRefGoogle Scholar
  2. Annis SL, Dastoor FP, Ziel H et al (2004) A DNA-based assay identifies Batrachochytrium dendrobatidis in amphibians. J Wildl Dis 40:420–428PubMedCrossRefGoogle Scholar
  3. Bataille A, Cashins SD, Grogan L et al (2015) Susceptibility of amphibians to chytridiomycosis is associated with MHC class II conformation. Proc Biol Sci 22:282Google Scholar
  4. Beard KH, O’Neill EM (2005) Infection of an invasive frog Eleutherodactylus coqui by the chytrid fungus Batrachochytrium dendrobatidis in Hawaii. Biol Conserv 126:591–595CrossRefGoogle Scholar
  5. Becker MH, Brucker RM, Schwantes CR et al (2009) The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microbiol 75:6635–6638PubMedPubMedCentralCrossRefGoogle Scholar
  6. Berger L, Skerratt L (2012) Disease strategy chytridiomycosis (infection with Batrachochytrium dendrobatidis) Version 1, 2012. Department of Sustainability, Environment, Water, Populations and Communities, Public Affairs, Commonwealth of Australia, Canberra. Available at: http://www.environment.gov.au/system/files/resources/387d3e66-3cdc-4676-8fed-759328277da4/files/chytrid-fungus-manual.pdf
  7. Berger L, Speare R, Daszak P et al (1998) Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci U S A 95:9031–9036PubMedPubMedCentralCrossRefGoogle Scholar
  8. Berger L, Speare R, Kent A (2000) Diagnosis of chytridiomycosis in amphibians by histological examination. Zoos Print J 15:184–190CrossRefGoogle Scholar
  9. Berger L, Hyatt AD, Olsen V et al (2002) Production of polyclonal antibodies to Batrachochytrium dendrobatidis and their use in an immunoperoxidase test for chytridiomycosis in amphibians. Dis Aquat Org 48:213–220PubMedCrossRefGoogle Scholar
  10. Berger L, Speare R, Hines HB et al (2004) Effect of season and temperature on mortality in amphibians due to chytridiomycosis. Aust Vet J 82:434–439PubMedCrossRefGoogle Scholar
  11. Berger L, Hyatt AD, Speare R et al (2005) Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Org 68:51–63PubMedCrossRefGoogle Scholar
  12. Berger L, Longcore J, Speare R, Hyatt A, Skerratt LF (2009) Fungal diseases in amphibians. In: Heatwole H, Wilkinson JW (eds) Amphibian biology, volume 8 amphibian decline: disease, parasites, maladies, and pollution. Surrey Beatty and Sons, Baulkham Hills, NSW, pp 2986–3052Google Scholar
  13. Blaustein AR, Romansic JM, Scheessele EA et al (2005) Interspecific variation in susceptibility of frog tadpoles to the pathogenic fungus Batrachochytrium dendrobatidis. Conserv Biol 19:1460–1146CrossRefGoogle Scholar
  14. Blooi M, Pasmans F, Longcore JE et al (2013) Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. J Clin Microbiol 51:4173–4177PubMedPubMedCentralCrossRefGoogle Scholar
  15. Blooi M, Martel A, Haesebrouck F et al (2015a) Treatment of urodelans based on temperature dependent infection dynamics of Batrachochytrium salamandrivorans. Sci Rep 5:8037PubMedPubMedCentralCrossRefGoogle Scholar
  16. Blooi M, Pasmans F, Rouffaer L et al (2015b) Succesful treatment of Batrachochytrium salamandrivorans infections in salamanders requires synergy between voriconazole, polymyxin E and temperature. Sci Rep 5:11788PubMedPubMedCentralCrossRefGoogle Scholar
  17. Blooi M, Pasmans F, Longcore JE et al (2016) Duplex real-time PCR for rapid simultaneous detection of Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans in amphibian samples. J Clin Microbiol 54:246–246PubMedCrossRefGoogle Scholar
  18. Bosch J, Martínez-Solano I, García-París M (2001) Evidence of a chytrid fungus infection involved in the decline of the common midwife toad (Alytes obstetricans) in protected areas of central Spain. Biol Conserv 97:331–337CrossRefGoogle Scholar
  19. Bosch J, Sanchez-Tome E, Fernandez-Loras A et al (2015) Successful elimination of a lethal wildlife infectious disease in nature. Biol Lett 11(11):20150874PubMedPubMedCentralCrossRefGoogle Scholar
  20. Boyle DG, Boyle DB, Olsen V et al (2004) Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Dis Aquat Org 60:141–148PubMedCrossRefGoogle Scholar
  21. Brannelly LA, Richards-Zawacki CL et al (2012) Clinical trials with itraconazole as a treatment for chytrid fungal infections in amphibians. Dis Aquat Org 101:95–104PubMedCrossRefGoogle Scholar
  22. Brannelly LA, Hunter DA, Skerratt LF et al (2015) Chytrid infection and post-release fitness in the reintroduction of an endangered alpine tree frog. Anim Conserv 19(2):153–162.  https://doi.org/10.1111/acv.12230CrossRefGoogle Scholar
  23. Brucker RM, Harris RN, Schwantes CR et al (2008) Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 34:1422–1429PubMedCrossRefGoogle Scholar
  24. Brutyn M, D’Herde K, Dhaenens M et al (2012) Batrachochytrium dendrobatidis zoospore secretions rapidly disturb intercellular junctions in frog skin. Fungal Genet Biol 49:830–837PubMedCrossRefGoogle Scholar
  25. Campbell CR, Voyles J, Cook DI et al (2012) Frog skin epithelium: electrolyte transport and chytridiomycosis. Int J Biochem Cell Biol 44:431–434PubMedCrossRefGoogle Scholar
  26. Cashins SD, Grogan LF, McFadden M et al (2013) Prior infection does not improve survival against the amphibian disease Chytridiomycosis. PLoS One 8:e56747PubMedPubMedCentralCrossRefGoogle Scholar
  27. Chatfield MWH, Richards-Zawacki CL (2011) Elevated temperature as a treatment for Batrachochytrium dendrobatidis infection in captive frogs. Dis Aquat Org 94:235–238PubMedCrossRefGoogle Scholar
  28. Cheng TL, Rovito SM, Wake DB et al (2011) Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci U S A 108:9502–9507PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cunningham AA, Beckmann K, Perkins M et al (2015) Surveillance emerging disease in UK amphibians. Vet Rec 176:468–468PubMedCrossRefGoogle Scholar
  30. Daskin JH, Alford RA, Puschendorf R (2011) Short-term exposure to warm microhabitats could explain amphibian persistence with Batrachochytrium dendrobatidis. PLoS One 6:e26215PubMedPubMedCentralCrossRefGoogle Scholar
  31. Davis AK, Keel MK, Ferreira A et al (2010) Effects of chytridiomycosis on circulating white blood cell distributions of bullfrog larvae (Rana catesbeiana). Comp Clin Pathol 19:49–55CrossRefGoogle Scholar
  32. Doddington BJ, Bosch J, Oliver JA et al (2013) Context dependent amphibian host population response to an invading pathogen. Ecology 94:1795–1804PubMedPubMedCentralCrossRefGoogle Scholar
  33. Duellman WE, Trueb L (1994) Biology of amphibians. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  34. Duffus ALJ (2009) Chytrid blinders: what other disease risks to amphibians are we missing? EcoHealth 6:335–339PubMedCrossRefGoogle Scholar
  35. Ellison AR, Savage AE, DiRenzo GV et al (2014) Fighting a losing battle: vigorous immune response countered by pathogen suppression of host defenses in the chytridiomycosis-susceptible frog Atelopus zeteki. G3 (Bethesda) 4:1275–1289CrossRefGoogle Scholar
  36. Ellison AR et al (2015) More than skin deep: functional genomic basis for resistance to amphibian chytridiomycosis. Genome Biol Evol 7:286–298.  https://doi.org/10.1093/gbe/evu285CrossRefGoogle Scholar
  37. Farrer RA, Weinert LA, Bielby J et al (2011) Multiple emergences of genetically diverse amphibian-infecting chytrids include a globalized hypervirulent recombinant lineage. Proc Natl Acad Sci U S A 108:18732–18736PubMedPubMedCentralCrossRefGoogle Scholar
  38. Farrer RA, Henk DA, Garner TWJ et al (2013) Chromosomal copy number variation, selection and uneven rates of recombination reveal cryptic genome diversity linked to pathogenicity. PLoS Genet 9(8):e1003703PubMedPubMedCentralCrossRefGoogle Scholar
  39. Fellers GM, Green DE, Longcore JE (2001) Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa). Copeia 2001:945–953CrossRefGoogle Scholar
  40. Fisher MC, Garner TWJ, Walker SF (2009) Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annu Rev Microbiol 63:291–310PubMedPubMedCentralCrossRefGoogle Scholar
  41. Fites JS, Ramsey JP, Holden WM et al (2013) The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science 342:366–369PubMedPubMedCentralCrossRefGoogle Scholar
  42. Fites JS, Reinert LK, Chappell TM et al (2014) Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis. Infect Immun 82:4698–4706PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fong JJ, Cheng TL, Bataille A et al (2015) Early 1900s detection of Batrachochytrium dendrobatidis in Korean amphibians. PLoS One 10(3):e0115656PubMedPubMedCentralCrossRefGoogle Scholar
  44. Forzan MJ, Gunn H, Scott P (2008) Chytridiomycosis in an aquarium collection of frogs: diagnosis, treatment, and control. J Zoo Wildl Med 39:406–411PubMedCrossRefGoogle Scholar
  45. Garland S, Wood J, Skerratt LF (2011) Comparison of sensitivity between real-time detection of a TaqMan assay for Batrachochytrium dendrobatidis and conventional detection. Dis Aquat Organ 94:101–105PubMedCrossRefGoogle Scholar
  46. Garner TW, Perkins MW, Govindarajulu P et al (2006) The emerging amphibian pathogen Batrachochytrium dendrobatidis globally infects introduced populations of the north American bullfrog, Rana catesbeiana. Biol Lett 2:455–459PubMedPubMedCentralCrossRefGoogle Scholar
  47. Garner TW, Garcia G, Carroll B et al (2009) Using itraconazole to clear Batrachochytrium dendrobatidis infection, and subsequent depigmentation of Alytes muletensis tadpoles. Dis Aquat Organ 83:257–260PubMedCrossRefGoogle Scholar
  48. Geiger CC, Kupfer E, Schar S et al (2011) Elevated temperature clears chytrid fungus infections from tadpoles of the midwife toad, Alytes obstetricans. Amphibia-Reptilia 32:276–280CrossRefGoogle Scholar
  49. Georoff TA, Moore RP, Rodriguez C et al (2013) Efficacy of treatment and long-term follow-up of Batrachochytrium dendrobatidis PCR-positive anurans following itraconazole bath treatment. J Zoo Wildl Med 44:395–403PubMedCrossRefGoogle Scholar
  50. Goka K, Yokoyama J, Une Y et al (2009) Amphibian chytridiomycosis in Japan: distribution, haplotypes and possible route of entry into Japan. Mol Ecol 18(23):4757–4774PubMedCrossRefGoogle Scholar
  51. Grant EHG, Muths E, Katz RA, et al (2016) Salamander chytrid fungus (Batrachochytrium salamandrivorans) in the United States—Developing research, monitoring, and management strategies. USGS Report  https://doi.org/10.3133/ofr20151233
  52. Greenspan SE, Longcore JE, Calhoun AJ (2012) Host invasion by Batrachochytrium dendrobatidis: fungal and epidermal ultrastructure in model anurans. Dis Aquat Org 100:201–210PubMedCrossRefGoogle Scholar
  53. Grogan LF (2014) Understanding host and environmental factors in the immunology and epidemiology of chytridiomycosis in anuran populations in Australia. PhD thesis, James Cook UniversityGoogle Scholar
  54. Grogan LF, Berger L, Rose K et al (2014) Surveillance for emerging biodiversity diseases of wildlife. PLoS Pathog 10:1–4CrossRefGoogle Scholar
  55. Harding KC, Hansen BJL, Goodman SJ (2005) Acquired immunity and stochasticity in epidemic intervals impede the evolution of host disease resistance. Am Nat 166:722–730PubMedCrossRefGoogle Scholar
  56. Harris RN, Lauer A, Simon MA et al (2009a) Addition of antifungal skin bacteria to salamanders ameliorates the effects of chytridiomycosis. Dis Aquat Org 83:11–16PubMedCrossRefGoogle Scholar
  57. Harris RN, Brucker RM, Walke JB et al (2009b) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824PubMedCrossRefGoogle Scholar
  58. Heard GW, Thomas CD, Hodgson JA et al (2015) Refugia and connectivity sustain amphibian metapopulations afflicted by disease. Ecol Lett 18:853–863PubMedCrossRefGoogle Scholar
  59. Heringstad B, Klemetsdal G, Steine T (2007) Selection responses for disease resistance in two selection experiments with Norwegian red cows. J Dairy Sci 90:2419–2426PubMedCrossRefGoogle Scholar
  60. Hudson PJ, Dobson AP (1998) In: Grenfell BT, Dobson AP (eds) Ecology of infectious diseases in natural populations. Cambridge University Press, CambridgeGoogle Scholar
  61. Hunter D, Osborne W, Marantelli G et al (1999) Implementation of a population augmentation project for remnant populations of the southern corroboree frog (Pseudophryne corroboree). In: Campbell A (ed) Declines and disappearances of Australian frogs. Environment Australia, CanberraGoogle Scholar
  62. Hyatt AD, Boyle DG, Olsen V et al (2007) Diagnostic assays and sampling protocols for the detection of Batrachochytrium dendrobatidis. Dis Aquat Org 73:175–192PubMedCrossRefGoogle Scholar
  63. James TY, Kauf F, Schoch CL et al (2006) Reconstructing the early evolution of fungi using a six-gene phylogeny. Nature 443:818–822PubMedCrossRefGoogle Scholar
  64. Johnson ML, Berger L, Philips L et al (2003) Fungicidal effects of chemical disinfectans, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aquat Org 57:255–260PubMedCrossRefGoogle Scholar
  65. Johnson PTJ, Hoverman JT (2014) Heterogeneous hosts: how variation in host size, behaviour and immunity affects parasite aggregation. J Anim Ecol 83:1103–1112PubMedCrossRefGoogle Scholar
  66. Jones ME, Paddock D, Bender L et al (2012) Treatment of chytridiomycosis with reduced-dose itraconazole. Dis Aquat Org 99:243–249PubMedCrossRefGoogle Scholar
  67. Joneson S, Stajich JE, Shiu SH et al (2011) Genomic transition to pathogenicity in Chytrid fungi. PLoS Pathog 7:e1002338PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kindermann C, Narayan EJ, Hero JM (2012) Urinary corticosterone metabolites and chytridiomycosis disease prevalence in a free-living population of male Stony Creek frogs (Litoria wilcoxii). Comp Biochem Physiol A 162:171–176CrossRefGoogle Scholar
  69. Kolby JE, Smith KM, Berger L et al (2014) First evidence of amphibian chytrid fungus (Batrachochytrium dendrobatidis) and ranavirus in Hong Kong amphibian trade. PLoS One 9:e90750PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kriger KM, Hines HB, Hyatt AD et al (2006) Techniques for detecting chytridiomycosis in wild frogs: comparing histology with real-time Taqman PCR. Dis Aquat Org 71:141–148PubMedCrossRefGoogle Scholar
  71. La Marca E, Lips KR, Lötters S et al (2005) Catastrophic population declines and extinctions in Neotropical harlequin frogs (Bufonidae: Atelopus). Biotropica 37:190–201CrossRefGoogle Scholar
  72. Lam BA, Walke JB, Vredenburg VT et al (2010) Proportion of individuals with anti-Batrachochytrium dendrobatidis skin bacteria is associated with population persistence in the frog Rana muscosa. Biol Conserv 143:529–531CrossRefGoogle Scholar
  73. Lam BA, Walton DB, Harris RN (2011) Motile zoospores of Batrachochytrium dendrobatidis move away from antifungal metabolites produced by amphibian skin bacteria. EcoHealth 8:36–45PubMedCrossRefGoogle Scholar
  74. Lauer A et al (2007) Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia 3:630–640CrossRefGoogle Scholar
  75. Lips KR, Brem F, Brenes R et al (2006) Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proc Natl Acad Sci U S A 103:3165–3170PubMedPubMedCentralCrossRefGoogle Scholar
  76. Lips KR, Diffendorfer J, Mendelson JR et al (2008) Riding the wave: reconciling the roles of disease and climate change in amphibian declines. PLoS Biol 6:e72PubMedPubMedCentralCrossRefGoogle Scholar
  77. Liu P, Stajich JE (2015) Characterization of the carbohydrate binding module 18 gene family in the amphibian pathogen Batrachochytrium dendrobatidis. Fungal Genet Biol 77:31–39PubMedCrossRefGoogle Scholar
  78. Longcore J, Pessier A, Nichols D (1999) Batrachochytrium dendrobatidis gen et sp nov, a chytrid pathogenic to amphibians. Mycologia 91:219–227CrossRefGoogle Scholar
  79. Loudon AH, Holland JA, Umile TP et al (2014) Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites. Front Microbiol 5:441PubMedPubMedCentralCrossRefGoogle Scholar
  80. Marantelli G, Berger L, Speare R et al (2004) Distribution of the amphibian chytrid Batrachochytrium dendrobatidis and keratin during tadpole development. Pac Conserv Biol 10:173–179CrossRefGoogle Scholar
  81. Martel A, Van Rooij P, Vercauteren G et al (2011) Developing a safe antifungal treatment protocol to eliminate Batrachochytrium dendrobatidis from amphibians. Med Mycol 49:143–149PubMedCrossRefGoogle Scholar
  82. Martel A, Spitzen-van der Sluijs A, Blooi M et al (2013) Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci U S A 110:15325–15329PubMedPubMedCentralCrossRefGoogle Scholar
  83. Martel A, Blooi M, Adriaensen C et al (2014) Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science 346:630–631PubMedPubMedCentralCrossRefGoogle Scholar
  84. McFadden M, Hobbs R, Marantelli G et al (2013) Captive management and breeding of the critically endangered southern corroboree frog (Pseudophryne corroboree) (Moore 1953) at Taronga and Melbourne zoos. Amphib Reptile Conserv 5:70–87Google Scholar
  85. McMahon TA, Rohr JR (2015) Transition of chytrid dungus infection from mouthparts to hind limbs during amphibian metamorphosis. EcoHealth 12:88–193CrossRefGoogle Scholar
  86. McMahon TA, Brannelly LA, Chatfield MWH et al (2013) Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in absence of infection. Proc Natl Acad Sci U S A 110:210–215PubMedCrossRefGoogle Scholar
  87. McMahon TA, Sears BF, Venesky MD et al (2014) Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature 511:224–227PubMedPubMedCentralCrossRefGoogle Scholar
  88. Meng P, Yang S, Shen C et al (2013) The first salamander defensing antimicrobial peptide. PLoS One 8:e83044PubMedPubMedCentralCrossRefGoogle Scholar
  89. Meyer W, Seegers U, Schnapper A et al (2007) Possible antimicrobial defense by free sugars on the epidermal surface of aquatic vertebrates. Aquat Biol 1:167–175CrossRefGoogle Scholar
  90. Miedaner T, Korzun V (2012) Marker-assisted selection for disease resistance in wheat and barley breeding. Phytopathology 102:560–566PubMedCrossRefGoogle Scholar
  91. Moss AS, Reddy NS, Dortaj IM et al (2008) Chemotaxis of the amphibian pathogen Batrachochytrium dendrobatidis and its response to a variety of attractants. Mycologia 100:1–5PubMedCrossRefGoogle Scholar
  92. Muletz CR, Myers JM, Domangue RJ et al (2012) Soil bioaugmentation with amphibian cutaneous bacteria protects amphibian hosts from infection by Batrachochytrium dendrobatidis. Biol Conserv 152:119–126CrossRefGoogle Scholar
  93. Murphy PJ, St-Hilaire S, Corn PS (2011) Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads. Dis Aquat Org 95:31–42PubMedCrossRefGoogle Scholar
  94. Murray KA, Skerratt LF, Garland S et al (2013) Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach. PLoS One 8(4):e61061PubMedPubMedCentralCrossRefGoogle Scholar
  95. Myers JM, Ramsey JP, Blackman AL et al (2012) Synergistic inhibition of the lethal fungal pathogen Batrachochytrium dendrobatidis: the combined effect of symbiotic bacterial metabolites and antimicrobial peptides of the frog Rana muscosa. J Chem Ecol 38:958–965PubMedCrossRefGoogle Scholar
  96. Newell DA, Goldingay RL, Brooks LO (2013) Population recovery following decline in an endangered stream-breeding frog (Mixophyes fleayi) from subtropical Australia. PLoS One 8:e58559PubMedPubMedCentralCrossRefGoogle Scholar
  97. Nichols DK, Lamirande EW, Pessier AP et al (2000) Experimental transmission and treatment of cutaneous chytridiomycosis in poison dart frogs (Dendrobates auratus and Dendrobates tinctorius). In: Proceedings of the Joint Conference of American Association of Zoo Veterinarians and International Association for Aquatic Animal Medicine, pp 42–44Google Scholar
  98. Nichols DK, Lamirande EW, Pessier AP et al (2001) Experimental transmission of cutaneous chytridiomycosis in dendrobatid frogs. J Wildl Dis 37:1–11PubMedCrossRefGoogle Scholar
  99. Olson DH, Aanensen DM, Ronnenberg KL et al (2013) Mapping the global emergence of Batrachochytrium dendrobatidis, the amphibian chytrid fungus. PLoS One 8:e56802PubMedPubMedCentralCrossRefGoogle Scholar
  100. Parris MJ, Beaudoin JG (2004) Chytridiomycosis impacts predator-prey interactions in larval amphibian communities. Oecologia 140:626–632PubMedCrossRefGoogle Scholar
  101. Pask JD, Cary TL, Rollins-Smith LA (2013) Skin peptides protect juvenile leopard frogs (Rana pipiens) against chytridiomycosis. J Exp Biol 216:2908–2916PubMedCrossRefGoogle Scholar
  102. Pasmans F, Van Rooij P, Blooi M et al (2013) Resistance to chytridiomycosis in European plethodontid salamanders of the genus Speleomantes. PLoS One 8:e63639PubMedPubMedCentralCrossRefGoogle Scholar
  103. Pessier AP, Mendelson JR (2010) A manual for control of infectious diseases in amphibian survival assurance colonies and reintroduction programs. IUCN/SSC Conservation Breeding Specialist GroupGoogle Scholar
  104. Pessier AP, Nichols DK, Longcore JE et al (1999) Cutaneous chytridiomycosis in poison dart frogs (Dendrobates spp.) and White's tree frogs (Litoria caerulea). J Vet Diagn Investig 11:194–199CrossRefGoogle Scholar
  105. Peterson JD, Steffen JE, Reinert LK et al (2013) Host stress response is important for the pathogenesis of the deadly amphibian disease, chytridiomycosis, in Litoria caerulea. PLoS One 8:e62146PubMedPubMedCentralCrossRefGoogle Scholar
  106. Phillott AD, Speare R, Hines HB et al (2010) Minimising exposure of amphibians to pathogens during field studies. Dis Aquat Org 92:175–185PubMedCrossRefGoogle Scholar
  107. Phillott AD, Grogan LF, Cashins SD et al (2013) Chytridiomycosis and seasonal mortality of tropical stream-associated frogs 15 years after introduction of Batrachochytrium dendrobatidis. Conserv Biol 27:1058–1068PubMedCrossRefGoogle Scholar
  108. Pilliod DS, Muths E, Scherer RD et al (2010) Effects of amphibian chytrid fungus on individual survival probability in wild boreal toads. Conserv Biol 24:1259–1267PubMedCrossRefGoogle Scholar
  109. Plehn M (1920) Neue Parasiten in Haut and Kiemen von Fischen. Ichthyochytrium und Mucophilus Zentralblatt für Bakteriologie und Parasitenkunde Abteilung, vol 1, pp 275–281Google Scholar
  110. Puschendorf R, Hoskin CJ, Cashins SD et al (2011) Environmental refuge from disease-driven amphibian extinction. Conserv Biol 25:956–964PubMedCrossRefGoogle Scholar
  111. Rachowicz LJ, Vredenburg VT (2004) Transmission of Batrachochytrium dendrobatidis within and between amphibian life stages. Dis Aquat Org 61:75–83PubMedCrossRefGoogle Scholar
  112. Ramsey JP, Reinert LK, Harper LK et al (2010) Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the south African clawed frog, Xenopus laevis. Infect Immun 78:3981–3992PubMedPubMedCentralCrossRefGoogle Scholar
  113. Reeder NMM, Pessier AP, Vredenburg VT (2012) A reservoir species for the emerging amphibian pathogen Batrachochytrium dendrobatidis thrives in a landscape decimated by disease. PLoS One 7:e33567PubMedPubMedCentralCrossRefGoogle Scholar
  114. Retallick RWR, McCallum H, Speare R (2004) Endemic infection of the amphibian chytrid fungus in a frog community post-decline. PLoS Biol 2:1965–1971CrossRefGoogle Scholar
  115. Ribas L, Li MS, Doddington BJ, Robert J et al (2009) Expression profiling the temperature-dependent amphibian response to infection by Batrachochytrium dendrobatidis. PLoS One 4:e8408PubMedPubMedCentralCrossRefGoogle Scholar
  116. Ricardo H (2006) Distribution and ecology of chytrid in Tasmania. Honours thesis, University of TasmaniaGoogle Scholar
  117. Richards-Zawacki CL (2010) Thermoregulatory behaviour affects prevalence of chytrid fungal infection in a wild population of Panamanian golden frogs. Proc R Soc Lond B Biol Sci 277:519–528CrossRefGoogle Scholar
  118. Rivas LR (1964) A reinterpretation of the concepts “sympatric” and “allopatric” with proposal of the additional terms “syntopic” and “allotopic”. Syst Zool 13:42–43CrossRefGoogle Scholar
  119. Rodriguez D, Becker CG, Pupin NC et al (2014) Long-term endemism of two highly divergent lineages of the amphibian-killing fungus in the Atlantic Forest of Brazil. Mol Ecol 23:774–787PubMedCrossRefGoogle Scholar
  120. Rollins-Smith LA (2009) The role of amphibian antimicrobial peptides in protection of amphibians from pathogens linked to global amphibian declines. Biochim Biophys Acta 1788:1593–1599PubMedCrossRefGoogle Scholar
  121. Rollins-Smith LA, Woodhams DC, Reinert LK et al (2006) Antimicrobial peptide defenses of the mountain yellow-legged frog (Rana muscosa). Dev Comp Immunol 30:831–842PubMedCrossRefGoogle Scholar
  122. Rollins-Smith LA, Ramsey JP, Pask JD et al (2011) Amphibian immune defenses against chytridiomycosis: impacts of changing environments. Integr Comp Biol 51:552–562PubMedCrossRefGoogle Scholar
  123. Rosenblum EB, Stajich JE, Maddox N et al (2008) Global gene expression profiles for life stages of the deadly amphibian pathogen Batrachochytrium dendrobatidis. Proc Natl Acad Sci U S A 105:17034–17039PubMedPubMedCentralCrossRefGoogle Scholar
  124. Rosenblum EB, Poorten TJ, Settles M et al (2009) Genome-wide transcriptional response of Silurana (Xenopus) tropicalis to infection with the deadly chytrid fungus. PLoS One 4:e6494PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rosenblum EB, Poorten TJ, Settles M et al (2012) Only skin deep: shared genetic response to the deadly chytrid fungus in susceptible frog species. Mol Ecol 21:3110–3120PubMedCrossRefGoogle Scholar
  126. Rosenblum EB, James TY, Zamudio KR et al (2013) Complex history of the amphibian-killing chytrid fungus revealed with genome resequencing data. Proc Natl Acad Sci U S A 110:9385–9390PubMedPubMedCentralCrossRefGoogle Scholar
  127. Rovito SM, Parra-Olea G, Vasquez-Almazan CR et al (2009) Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. Proc Natl Acad Sci U S A 106:3231–3236PubMedPubMedCentralCrossRefGoogle Scholar
  128. Rowley JJL, Alford RA (2007) Behaviour of Australian rain forest stream frogs may affect the transmission of chytridiomycosis. Dis Aquat Org 77:1–9PubMedCrossRefGoogle Scholar
  129. Rowley JJL, Skerratt LF, Alford RA et al (2007) Retreat sites of rain forest stream frogs are not a reservoir for Batrachochytrium dendrobatidis in northern Queensland, Australia. Dis Aquat Organ 74:7–12PubMedCrossRefGoogle Scholar
  130. Sabino-Pinto JS, Bletz M, Hendrix R et al (2015) First detection of the emerging fungal pathogen in Batrachochytrium salamandrivorans in Germany. Amphibia-Reptilia 36(4):411–416.  https://doi.org/10.1163/15685381-00003008CrossRefGoogle Scholar
  131. Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci U S A 108:16705–16710PubMedPubMedCentralCrossRefGoogle Scholar
  132. Scheele BC, Guarino F, Osbourne W et al (2014) Decline and re-expansion of an amphibian with high prevalence of chytrid fungus. Biol Conserv 170:86–91CrossRefGoogle Scholar
  133. Scheele BC, Hunter DA, Skerratt LF et al (2015) Low impact of chytridiomycosis on frog recruitment enables persistence in refuges despite high adult mortality. Biol Conserv 182:36–43CrossRefGoogle Scholar
  134. Schloegel LM, Ferreira CM, James TY et al (2010) The north American bullfrog as a reservoir for the spread of Batrachochytrium dendrobatidis in Brazil. Anim Conserv 13:53–61CrossRefGoogle Scholar
  135. Schloegel LM, Toledo LF, Longcore JE et al (2012) Novel, panzootic and hybrid genotypes of amphibian chytridiomycosis associated with the bullfrog trade. Mol Ecol 21:5162–5177PubMedCrossRefGoogle Scholar
  136. Schmeller DS, Blooi M, Martel A et al (2014) Microscopic aquatic predatorsstrongly affect infection dynamics of a globally emerged pathogen. Curr Biol 24:176–180PubMedCrossRefGoogle Scholar
  137. Searle CL, Gervasi SS, Hua J et al (2011) Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv Biol 25:965–974PubMedCrossRefGoogle Scholar
  138. Sheafor B, Davidson EW, Parr L et al (2008) Antimicrobial peptide defenses in the salamander Ambystoma tigrinum, against emerging amphibian pathogens. J Wildl Dis 44:226–236PubMedCrossRefGoogle Scholar
  139. Skerratt L, Speare R, Berger L (2011a) Mitigating the impact of diseases affecting biodiversity—retrospective on the outbreak investigation for chytridiomycosis. Ecohealth 7:S26Google Scholar
  140. Skerratt LF, Berger L, Hines HB et al (2008) Survey protocol for detecting chytridiomycosis in all Australian frog populations. Dis Aquat Org 80:85–94PubMedCrossRefGoogle Scholar
  141. Skerratt LF, Mendez D, McDonald KR et al (2011b) Validation of diagnostic tests in wildlife: the case of chytridiomycosis in wild amphibians. J Herpetol 45:444–450CrossRefGoogle Scholar
  142. Skerratt LF, Berger L, Clemann N et al (2016) Priorities for management of chytridiomycosis in Australia: saving frogs from extinction. Wildlife Res 43(2):105–120CrossRefGoogle Scholar
  143. Smith KG, Weldon C, Conradie W et al (2007) Relationships among size, development, and Batrachochytrium dendrobatidis infection in African tadpoles. Dis Aquat Organ 74:159–164PubMedCrossRefGoogle Scholar
  144. Soto-Azat C, Clarke BT, Poynton JC (2010) Widespread historical presence of Batrachochytrium dendrobatidis in African pipid frogs. Divers Distrib 16:126–131CrossRefGoogle Scholar
  145. Stice MJ, Briggs CJ (2010) Immunization is ineffective at preventing infection and mortality due to the amphibian chytrid fungus Batrachochytrium dendrobatidis. J Wildl Dis 46:70–77PubMedCrossRefGoogle Scholar
  146. Stockwell MP, Clulow J, Mahony MJ (2015a) Evidence of a salt refuge: chytrid infection loads are suppressed in hosts exposed to salt. Oecologia 177:901–910PubMedCrossRefGoogle Scholar
  147. Stockwell MP, Storrie LJ, Pollard CJ et al (2015b) Effects of pond salinization on survival rate of amphibian hosts infected with the chytrid fungus. Conserv Biol 29:391–399PubMedCrossRefGoogle Scholar
  148. Swei A, Rowley JJL, Rodder D et al (2011) Is chytridiomycosis an emerging infectious disease in Asia? PLoS One 6(8):e23179PubMedPubMedCentralCrossRefGoogle Scholar
  149. Talley BL, Muletz CR, Vredenburg VT et al (2015) A century of Batrachochytrium dendrobatidis in Illinois amphibians (1888–1989). Biol Conserv 182:254–261CrossRefGoogle Scholar
  150. Tamukai K, Une Y, Tominaga A et al (2011) Treatment of spontaneous chytridiomycosis in captive amphibians using itraconazole. J Vet Med Sci 73:155–159PubMedCrossRefGoogle Scholar
  151. Tennessen JA, Woodhams DC, Chaurand P et al (2009) Variations in the expresses antimicrobial peptide repertoire of northern leopard frog (Rana pipiens) populations suggest intraspecies differences in resistance to pathogens. Dev Comp Immunol 33:1247–1257PubMedPubMedCentralCrossRefGoogle Scholar
  152. Thekkiniath JC, Zabet-Moghaddam M, San Francisco SK et al (2013) A novel subtilisin-like serine protease of Batrachochytrium dendrobatidis is induced by thyroid hormone and degrades antimicrobial peptides. Fungal Biol 117:451–461PubMedCrossRefGoogle Scholar
  153. Tobler U, Schmidt BR (2010) Within- and among-population variation in chytridiomycosis-induced mortality in the toad Alytes obstetricans. PLoS One 5:e10927PubMedPubMedCentralCrossRefGoogle Scholar
  154. Une Y, Kadekaru S, Tamukai K et al (2008) First report of spontaneous chytridiomycosis in frogs in Asia. Dis Aquat Organ 82:157–160PubMedCrossRefGoogle Scholar
  155. Van Ells T, Stanton J, Strieby A et al (2003) Use of immunohistochemistry to diagnose chytridiomycosis in dyeing poison dart frogs (Dendrobates tinctorius). J Wildl Dis 39:742–745PubMedCrossRefGoogle Scholar
  156. Van Rooij P, Martel A, D’Herde K et al (2012) Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent. PLoS One 7:1–8CrossRefGoogle Scholar
  157. Van Rooij P, Martel A, Haesebrouck F et al (2015) Amphibian chytridiomycosis: a review with focus on fungus-host interactions. Vet Res 46:137PubMedPubMedCentralCrossRefGoogle Scholar
  158. Venesky MD, Mendelson JR, Sears BF et al (2012) Selecting for tolerance against pathogens and herbivores to enhance success of reintroduction and translocation. Conserv Biol 26:586–592PubMedCrossRefGoogle Scholar
  159. Voyles J, Young S, Berger L, Campbell C, Voyles WF, Dinudom A, Cook D, Webb R, Alford RA, Skerratt LF, Speare R (2009) Pathogenesis of Chytridiomycosis, a Cause of Catastrophic Amphibian Declines. Science 326: 582–585.PubMedCrossRefGoogle Scholar
  160. Vredenburg VT, Knapp RA, Tunstall TS et al (2010) Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Nat Acad Sci U S A 107:9689–9694CrossRefGoogle Scholar
  161. Vredenburg VT, Briggs CJ, Harris RN (2011) Host-pathogen dynamics of amphibian chytridiomycosis: the role of the skin microbiome in health and disease. In: Fungal diseases: an emerging threat to human, animal and plant health: workshop summary. National Academy Press, WashingtonGoogle Scholar
  162. Walker S, Bosch J, James TY et al (2008) Invasive pathogens threaten species recovery programs. Curr Biol 18:853–R854CrossRefGoogle Scholar
  163. Walker SF, Bosch J, Gomez V et al (2010) Factors driving pathogenicity vs. prevalence of amphibian panzootic chytridiomycosis in Iberia. Ecol Lett 13(3):372–382PubMedCrossRefGoogle Scholar
  164. Weldon C, du Preez LH, Hyatt AD et al (2004) Origin of the amphibian chytrid fungus. Emerg Infect Dis 10:2100–2105PubMedPubMedCentralCrossRefGoogle Scholar
  165. Woodhams DC, Alford RA, Marantelli G (2003) Emerging disease of amphibians cured by elevated body temperature. Dis Aquat Org 55:65–67PubMedCrossRefGoogle Scholar
  166. Woodhams DC, Ardipradja K, Alford RA et al (2007) Resistance to chytridiomycosis varies among amphibian species and is correlated with skin peptide defenses. Anim Conserv 10:409–417CrossRefGoogle Scholar
  167. Woodhams DC, Bosch J, Briggs CJ et al (2011) Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool 8(1):8PubMedPubMedCentralCrossRefGoogle Scholar
  168. Woodhams DC, Bell SC, Kenyon N et al (2012a) Immune evasion or avoidance: fungal skin infection linked to reduced defence peptides in Australian green-eyed treefrogs, Litoria serrata. Fungal Biol 116:1203–1211PubMedCrossRefGoogle Scholar
  169. Woodhams DC, Geiger CC, Reinert LK et al (2012b) Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. Dis Aquat Organ 98:11–25PubMedCrossRefGoogle Scholar
  170. Woodward A, Berger L, Skerratt LF (2014) In vitro sensitivity of the amphibian pathogen Batrachochytrium dendrobatidis to antifungal therapeutics. Res Vet Sci 97:364–366PubMedCrossRefGoogle Scholar
  171. Young S, Whitehorn P, Berger L et al (2014) Defects in host immune function in tree frogs with chronic chytridiomycosis. PLoS One 9:e107284PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • An Martel
    • 1
  • Frank Pasmans
    • 1
  • Matthew C. Fisher
    • 2
  • Laura F. Grogan
    • 3
  • Lee F. Skerratt
    • 4
  • Lee Berger
    • 4
  1. 1.Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian DiseasesGhent UniversityGhentBelgium
  2. 2.Department of Infectious Disease Epidemiology, School of Public HealthImperial College LondonLondonUK
  3. 3.Griffith University, Environmental Futures Research Institute, School of EnvironmentBrisbaneAustralia
  4. 4.One Health Research Group, College of Public Health, Medical and Veterinary SciencesJames Cook UniversityTownsvilleAustralia

Personalised recommendations