Belnap Jr., N.D.: Display logic. J. Philos. Logic 11(4), 375–417 (1982)
MathSciNet
CrossRef
MATH
Google Scholar
Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer Science, vol. 53. Cambridge University Press, Cambridge (2001)
CrossRef
MATH
Google Scholar
Brünnler. K.: Deep sequent systems for modal logic. In: Advances in Modal Logic, vol. 6, pp. 107–119. College Publications, London (2006)
Google Scholar
Chagrov, A., Zakharyashchev, M.: Modal companions of intermediate propositional logics. Stud. Logica. 51(1), 49–82 (1992)
MathSciNet
CrossRef
MATH
Google Scholar
Ciabattoni, A., Ramanayake, R.: Power and limits of structural display rules. ACM Trans. Comput. Logic 17(3), 1–39 (2016)
MathSciNet
CrossRef
MATH
Google Scholar
Dyckhoff, R., Negri, S.: Proof analysis in intermediate logics. Arch. Math. Log. 51(1–2), 71–92 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Dyckhoff, R., Negri, S.: Geometrization of first-order logic. Bull. Symbolic Logic 21, 123–163 (2015)
MathSciNet
CrossRef
MATH
Google Scholar
Fitting, M.: Proof Methods for Modal and Intuitionistic Logics. Synthese Library, vol. 169. D. Reidel Publishing Co., Dordrecht (1983)
CrossRef
MATH
Google Scholar
Fitting, M.: Prefixed tableaus and nested sequents. Ann. Pure Appl. Logic 163(3), 291–313 (2012)
MathSciNet
CrossRef
MATH
Google Scholar
Goré, R., Postniece, L., Tiu, A.: On the correspondence between display postulates and deep inference in nested sequent calculi for tense logics. Log. Methods Comput. Sci. 7(2), 1–38 (2011). (2:8)
MathSciNet
CrossRef
MATH
Google Scholar
Goré, R., Ramanayake, R.: Labelled tree sequents, tree hypersequents and nested (deep) sequents. In: Advances in Modal Logic, vol. 9. College Publications, London (2012)
Google Scholar
Greco, G., Ma, M., Palmigiano, A., Tzimoulis, A., Zhao, Z.: Unified correspondence as a proof-theoretic tool. J. Logic Comput. (2016, to appear). https://doi.org/10.1093/logcom/exw022
Kashima, R.: Cut-free sequent calculi for some tense logics. Stud. Logica. 53(1), 119–135 (1994)
MathSciNet
CrossRef
MATH
Google Scholar
Kracht, M.: Power and weakness of the modal display calculus. In: Proof Theory of Modal Logic (Hamburg, 1993) Applied Logic Series, vol. 2, pp. 93–121. Kluwer Academic Publishers, Dordrecht (1996)
Google Scholar
Lemmon, E.J., Scott, D.S.: The ‘Lemmon Notes’: An Introduction to Modal Logic. Blackwell, Oxford (1977)
MATH
Google Scholar
Mints, G.: Indexed systems of sequents and cut-elimination. J. Philos. Logic 26(6), 671–696 (1997)
MathSciNet
CrossRef
MATH
Google Scholar
Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34(5–6), 507–544 (2005)
MathSciNet
CrossRef
MATH
Google Scholar
Ramanayake, R.: Inducing syntactic cut-elimination for indexed nested sequents. In: Proceedings of IJCAR, pp. 416–432 (2016)
Google Scholar
Restall, G.: Comparing modal sequent systems. http://consequently.org/papers/comparingmodal.pdf
Restall, G., Poggiolesi, F.: Interpreting and applying proof theory for modal logic. In: Restall, G., Russell, G. (eds.) New Waves in Philosophical Logic, pp. 39–62 (2012)
Google Scholar
Viganò, L.: Labelled Non-Classical Logics. Kluwer Academic Publishers, Dordrecht (2000). With a foreword by Dov M. Gabbay
CrossRef
MATH
Google Scholar
Wansing, H.: Displaying Modal Logic. Trends in Logic-Studia Logica Library, vol. 3. Kluwer Academic Publishers, Dordrecht (1998)
MATH
Google Scholar