Advertisement

A General Lower Bound for Collaborative Tree Exploration

  • Yann DisserEmail author
  • Frank Mousset
  • Andreas Noever
  • Nemanja Škorić
  • Angelika Steger
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10641)

Abstract

We consider collaborative graph exploration with a set of k agents. All agents start at a common vertex of an initially unknown graph with n vertices and need to collectively visit all other vertices. We assume agents are deterministic, moves are simultaneous, and we allow agents to communicate globally. For this setting, we give the first non-trivial lower bounds that bridge the gap between small (\(k \le \sqrt{n}\)) and large (\(k \ge n\)) teams of agents. Remarkably, our bounds tightly connect to existing results in both domains.

First, we significantly extend a lower bound of \(\varOmega (\log k / \log \log k)\) by Dynia et al. on the competitive ratio of a collaborative tree exploration strategy to the range \(k \le n \log ^c n\) for any \(c \in \mathbb {N}\). Second, we provide a tight lower bound on the number of agents needed for any competitive exploration algorithm. In particular, we show that any collaborative tree exploration algorithm with \(k=Dn^{1+o(1)}\) agents has a competitive ratio of \(\omega (1)\), while Dereniowski et al. gave an algorithm with \(k=Dn^{1+\varepsilon }\) agents and competitive ratio \(\mathcal {O}(1)\), for any \(\varepsilon > 0\) and with D denoting the diameter of the graph. Lastly, we show that, for any exploration algorithm using \(k=n\) agents, there exist trees of arbitrarily large height D that require \(\varOmega (D^2)\) rounds, and we provide a simple algorithm that matches this bound for all trees.

Notes

Acknowledgments

We would like to thank Rajko Nenadov for useful discussions.

References

  1. 1.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29(4), 1164–1188 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aleliunas, R., Karp, R.M., Lipton, R.J., Lovász, L., Rackoff, C.: Random walks, universal traversal sequences, and the complexity of maze problems. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science (FOCS), pp. 218–223 (1979)Google Scholar
  3. 3.
    Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random walks are faster than one. Comb. Probab. Comput. 20(4), 481–502 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ambühl, C., Gąsieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7(2), 1–21 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Awerbuch, B., Betke, M., Rivest, R.L., Singh, M.: Piecemeal graph exploration by a mobile robot. Inf. Comput. 152(2), 155–172 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bender, M.A., Fernández, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. Inf. Comput. 176(1), 1–21 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bender, M.A., Slonim, D.K.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proceedings of 35th Annual Symposium on Foundations of Computer Science (FOCS), pp. 75–85 (1994)Google Scholar
  8. 8.
    Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: Proceedings of the 19th Annual Symposium on Foundations of Computer Science (FOCS), pp. 132–142 (1978)Google Scholar
  9. 9.
    Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple polygons: how robots benefit from looking back. Algorithmica 65(1), 43–59 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chalopin, J., Das, S., Disser, Y., Mihalák, M., Widmayer, P.: Mapping simple polygons. ACM Trans. Algorithms 11(4), 1–16 (2015)CrossRefzbMATHGoogle Scholar
  11. 11.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32(3), 265–297 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dereniowski, D., Disser, Y., Kosowski, A., Pająk, D., Uznański, P.: Fast collaborative graph exploration. Inf. Comput. 243, 37–49 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51(1), 38–63 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Disser, Y., Hackfeld, J., Klimm, M.: Undirected graph exploration with \(\varTheta (\log \log n)\) pebbles. In: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 25–39 (2016)Google Scholar
  15. 15.
    Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. ACM Trans. Algorithms 2, 380–402 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dynia, M., Łopuszański, J., Schindelhauer, C.: Why robots need maps. In: Prencipe, G., Zaks, S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 41–50. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-72951-8_5 CrossRefGoogle Scholar
  17. 17.
    Elsässer, R., Sauerwald, T.: Tight bounds for the cover time of multiple random walks. Theor. Comput. Sci. 412(24), 2623–2641 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration. Networks 48(3), 166–177 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fraigniaud, P., Ilcinkas, D., Peer, G., Pelc, A., Peleg, D.: Graph exploration by a finite automaton. Theor. Comput. Sci. 345(2–3), 331–344 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Higashikawa, Y., Katoh, N., Langerman, S., Tanigawa, S.I.: Online graph exploration algorithms for cycles and trees by multiple searchers. J. Comb. Optim. 28(2), 480–495 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hoffmann, F.: One pebble does not suffice to search plane labyrinths. In: Proceedings of the 3rd International Symposium on Fundamentals of Computation Theory (FCT), pp. 433–444 (1981)Google Scholar
  22. 22.
    Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with rectangular obstacles. In: Proceedings of the 24th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 27–36 (2012)Google Scholar
  23. 23.
    Ortolf, C., Schindelhauer, C.: A recursive approach to multi-robot exploration of trees. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 343–354. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-09620-9_26 Google Scholar
  24. 24.
    Ortolf, C., Schindelhauer, C.: Strategies for parallel unaware cleaners. Theor. Comput. Sci. 608, 178–189 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 1–24 (2008)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Yann Disser
    • 1
    Email author
  • Frank Mousset
    • 2
  • Andreas Noever
    • 2
  • Nemanja Škorić
    • 2
  • Angelika Steger
    • 2
  1. 1.Institute of Mathematics, Graduate School CETU DarmstadtDarmstadtGermany
  2. 2.Department of Computer ScienceETH ZurichZurichSwitzerland

Personalised recommendations