Skip to main content

Improved Distributed Algorithms for Coloring Interval Graphs with Application to Multicoloring Trees

  • Conference paper
  • First Online:
Structural Information and Communication Complexity (SIROCCO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10641))

Abstract

We give a distributed \((1+\epsilon )\)-approximation algorithm for the minimum vertex coloring problem on interval graphs, which runs in the \(\mathcal {LOCAL}\) model and operates in \(\mathrm {O}(\frac{1}{\epsilon } \log ^* n)\) rounds. If nodes are aware of their interval representations, then the algorithm can be adapted to the \(\mathcal {CONGEST}\) model using the same number of rounds. Prior to this work, only constant factor approximations using \(\mathrm {O}(\log ^* n)\) rounds were known [12]. Linial’s ring coloring lower bound implies that the dependency on \(\log ^* n\) cannot be improved. We further prove that the dependency on \(\frac{1}{\epsilon }\) is also optimal.

To obtain our \(\mathcal {CONGEST}\) model algorithm, we develop a color rotation technique that may be of independent interest. We demonstrate that color rotations can also be applied to obtain a \((1+\epsilon )\)-approximate multicoloring of directed trees in \(\mathrm {O}( \frac{1}{\epsilon } \log ^* n)\) rounds.

M. M. Halldórsson is supported by grants 152679-05 and 174484-05 from the Icelandic Research Fund. C. Konrad is supported by the Centre for Discrete Mathematics and its Applications (DIMAP) at Warwick University and by EPSRC award EP/N011163/1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For example a complete bipartite graph \(G=(A, B, E)\) with \(|A| = |B| = n\) can be colored with 2 colors while \(\varDelta = n\).

  2. 2.

    Chang et al. argue in [8] that using a graph construction by Bollobás [7], the same lower bound holds even for colorings with \(o(d/\log d)\) colors.

References

  1. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barenboim, L.: Deterministic (\(\varDelta \) + 1)-coloring in sublinear (in \(\varDelta \)) time in static, dynamic, and faulty networks. J. ACM 63(5), 47:1–47:22 (2016). http://dl.acm.org/citation.cfm?id=2979675

    Article  MathSciNet  Google Scholar 

  3. Barenboim, L., Elkin, M.: Sublogarithmic distributed MIS algorithm for sparse graphs using Nash-Williams decomposition. Distrib. Comput. 22(5), 363–379 (2010)

    Article  MATH  Google Scholar 

  4. Barenboim, L., Elkin, M.: Distributed graph coloring: fundamentals and recent developments. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers (2013). http://dx.doi.org/10.2200/S00520ED1V01Y201307DCT011

  5. Barenboim, L., Elkin, M., Gavoille, C.: A fast network-decomposition algorithm and its applications to constant-time distributed computation. In: Scheideler, C. (ed.) Structural Information and Communication Complexity. LNCS, vol. 9439, pp. 209–223. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25258-2_15

    Chapter  Google Scholar 

  6. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. J. ACM 63(3), 20:1–20:45 (2016). https://doi.org/10.1145/2903137

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B.: Chromatic number, girth and maximal degree. Discrete Math. 24(3), 311–314 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chang, Y.J., Kopelowitz, T., Pettie, S.: An exponential separation between randomized and deterministic complexity in the local model. In: Proceedings 57th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 615–624 (2016)

    Google Scholar 

  9. Cole, R., Vishkin, U.: Deterministic coin tossing with applications to optimal parallel list ranking. Inf. Control 70(1), 32–53 (1986). https://doi.org/10.1016/S0019-9958(86)80023-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Fraigniaud, P., Heinrich, M., Kosowski, A.: Local conflict coloring. In: IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9–11 October 2016. Hyatt Regency, New Brunswick, New Jersey, USA, pp. 625–634 (2016). http://dx.doi.org/10.1109/FOCS.2016.73

  11. Goldberg, A.V., Plotkin, S.A., Shannon, G.E.: Parallel symmetry-breaking in sparse graphs. SIAM J. Discrete Math. 1(4), 434–446 (1988). https://doi.org/10.1137/0401044

    Article  MathSciNet  MATH  Google Scholar 

  12. Halldórsson, M.M., Konrad, C.: Distributed algorithms for coloring interval graphs. In: Kuhn, F. (ed.) DISC 2014. LNCS, vol. 8784, pp. 454–468. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45174-8_31

    Google Scholar 

  13. Harris, D.G., Schneider, J., Su, H.H.: Distributed (&#1)-coloring in sublogarithmic rounds. In: Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC 2016, pp. 465–478. ACM, New York (2016). http://doi.acm.org/10.1145/2897518.2897533

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, NewYork (1972)

    Chapter  Google Scholar 

  15. Kuhn, F.: Local multicoloring algorithms: computing a nearly-optimal TDMA schedule in constant time. In: 26th International Symposium on Theoretical Aspects of Computer Science, STACS 2009, 26–28 February 2009, Freiburg, Germany, Proceedings, pp. 613–624 (2009). http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1852

  16. Linial, N.: Locality in distributed graph algorithms. SIAM J. Comput. 21(1), 193–201 (1992). https://doi.org/10.1137/0221015

    Article  MathSciNet  MATH  Google Scholar 

  17. Luby, M.: A simple parallel algorithm for the maximal independent set problem. In: Proceedings of the Seventeenth Annual ACM Symposium on Theory of Computing, STOC 1985, pp. 1–10. ACM, New York (1985). http://doi.acm.org/10.1145/22145.22146

  18. Schneider, J., Elkin, M., Wattenhofer, R.: Symmetry breaking depending on the chromatic number or the neighborhood growth. Theor. Comput. Sci. 509, 40–50 (2013). https://doi.org/10.1016/j.tcs.2012.09.004

    Article  MathSciNet  MATH  Google Scholar 

  19. Schneider, J., Wattenhofer, R.: An optimal maximal independent set algorithm for bounded-independence graphs. Distrib. Comput. 22, 349–361 (2010)

    Article  MATH  Google Scholar 

  20. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry breaking. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2010, pp. 257–266. ACM, New York (2010). http://doi.acm.org/10.1145/1835698.1835760

  21. Smith, D.A.: The first-fit algorithm uses many colors on some interval graphs. Ph.D. thesis, Arizona State University, Tempe, AZ, USA (2010). aAI3428197

    Google Scholar 

  22. Valencia-Pabon, M.: Revisiting Tucker’s algorithm to color circular arc graphs. SIAM J. Comput. 32(4), 1067–1072 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and chromatic number. Theory Comput. 3(1), 103–128 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Konrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halldórsson, M.M., Konrad, C. (2017). Improved Distributed Algorithms for Coloring Interval Graphs with Application to Multicoloring Trees. In: Das, S., Tixeuil, S. (eds) Structural Information and Communication Complexity. SIROCCO 2017. Lecture Notes in Computer Science(), vol 10641. Springer, Cham. https://doi.org/10.1007/978-3-319-72050-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72050-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72049-4

  • Online ISBN: 978-3-319-72050-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics