Algebraic Model Management: A Survey

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10644)


We survey the field of model management and describe a new model management approach based on algebraic specification.


Model management Algebraic databases Data integration Functorial data migration Category theory Algebraic specification 



The authors thank Lucian Popa, Eswaran Subrahmanian, and Peter Gates and were supported by NIST SBIR grant 70NANB 16H178, AFOSR grant FA9550–14–1–0031 and NASA grant NNL14AA05C.


  1. 1.
    Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley-Longman, Boston (1995)zbMATHGoogle Scholar
  2. 2.
    Alagić, S., Bernstein, P.A.: A model theory for generic schema management. In: Ghelli, G., Grahne, G. (eds.) DBPL 2001. LNCS, vol. 2397, pp. 228–246. Springer, Heidelberg (2002). CrossRefGoogle Scholar
  3. 3.
    Barr, M., Wells, C.: Category Theory for Computing Science. Prentice Hall International (1995)Google Scholar
  4. 4.
    Bernstein, P.A., Melnik, S.: Model management 2.0: manipulating richer mappings. In: ICMD (2007)Google Scholar
  5. 5.
    Doan, H., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann, Burlington (2012)Google Scholar
  6. 6.
    Enderton, H.B.: A Mathematical introduction to logic. Academic Press, Cambridge (2001)zbMATHGoogle Scholar
  7. 7.
    Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.: Composing schema mappings: second-order dependencies to the rescue. TODS 30(4), 994–1055 (2005)CrossRefGoogle Scholar
  9. 9.
    Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.: Quasi-inverses of schema mappings. TODS 33(2), 11 (2008)CrossRefGoogle Scholar
  10. 10.
    Fagin, R.: Inverting schema mappings. TODS 32(4), 25 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fleming, M., Gunther, R., Rosebrugh, R.: A database of categories. J. Symbolic Comput. 35(2), 127–135 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ghilardi, S., Lutz, C., Wolter, F.: Did I damage my ontology? Principles of knowledge representation and reasoning (2006)Google Scholar
  13. 13.
    Goguen, J.: Information integration in institutions (unpublished) (2004).
  14. 14.
    Haas, L.M., Hernández, M.A., Ho, H., Popa, L., Roth, M.: Clio grows up: from research prototype to industrial tool. In: ICMD (2005)Google Scholar
  15. 15.
    Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  16. 16.
    Melnik, S.: Generic Model Management: Concepts and Algorithms. LNCS. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  17. 17.
    Mitchell, J.C.: Foundations of Programming Languages. MIT Press, Cambridge (1996)Google Scholar
  18. 18.
    Mossakowski, T., Krumnack, U., Maibaum, T.: What is a derived signature morphism? In: Codescu, M., Diaconescu, R., Ţuţu, I. (eds.) WADT 2015. LNCS, vol. 9463, pp. 90–109. Springer, Cham (2015). CrossRefGoogle Scholar
  19. 19.
    Schultz, P., Spivak, D.I., Vasilakopoulou, C., Wisnesky, R.: Algebraic databases. Theory and Applications of Categories (2017)Google Scholar
  20. 20.
    Schultz, P., Wisnesky, R.: Algebraic data integration. J. Funct. Program. 27 (2016). Cambridge University Press.
  21. 21.
    Spivak, D.I.: Functorial data migration. Inf. Comput. 217, 31–51 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Spivak, D.I.: Database queries and constraints via lifting problems. Math. Struct. Comput. Sci. 6(24) (2014)Google Scholar
  23. 23.
    Spivak, D.I., Wisnesky, R.: Relational foundations for functorial data migration. In: DBPL (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Categorical Informatics, Inc.CambridgeUSA

Personalised recommendations