Advertisement

Asymmetric Combination of Logics is Functorial: A Survey

  • Renato NevesEmail author
  • Alexandre Madeira
  • Luis S. Barbosa
  • Manuel A. Martins
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10644)

Abstract

Asymmetric combination of logics is a formal process that develops the characteristic features of a specific logic on top of another one. Typical examples include the development of temporal, hybrid, and probabilistic dimensions over a given base logic. These examples are surveyed in the paper under a particular perspective—that this sort of combination of logics possesses a functorial nature. Such a view gives rise to several interesting questions. They range from the problem of combining translations (between logics), to that of ensuring property preservation along the process, and the way different asymmetric combinations can be related through appropriate natural transformations.

Keywords

Institution Hybridisation Probabilisation Temporalisation Asymmetric combination 

Notes

Acknowledgments

This work is financed by the ERDF - European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation - COMPETE 2020 Programme and by National Funds through the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia within projects POCI-01-0145-FEDER-016692 and UID/MAT/04106/2013. Further support was provided by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement through the ERFD in the context of project NORTE-01-0145-FEDER-000037. Renato Neves was also sponsored by FCT grant SFRH/BD/52234/2013, and Alexandre Madeira by FCT grant SFRH/BPD/103004/2014.

References

  1. 1.
    Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logics. Elsevier, Amsterdam (2006)Google Scholar
  2. 2.
    Baltazar, P.: Probabilization of logics: completeness and decidability. Log. Univers. 7(4), 403–440 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blackburn, P., de Rijke, M.: Why combine logics? Stud. Logica 59(1), 5–27 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Caleiro, C., Mateus, P., Sernadas, A., Sernadas, C.: Quantum institutions. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 50–64. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780274_4 CrossRefGoogle Scholar
  5. 5.
    Caleiro, C., Sernadas, A., Sernadas, C.: Fibring logics: past, present and future. In: Artëmov, S.N., Barringer, H., d’Avila Garcez, A.S., Lamb, L.C., Woods, J. (eds.) We Will Show Them! Essays in Honour of Dov Gabbay, vol. 1, pp. 363–388. College Publications (2005)Google Scholar
  6. 6.
    Caleiro, C., Sernadas, C., Sernadas, A.: Parameterisation of logics. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 48–63. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48483-3_4 CrossRefGoogle Scholar
  7. 7.
    Carnielli, W., Coniglio, M.E.: Combining logics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, Winter 2011 edn. (2011)Google Scholar
  8. 8.
    Cengarle, M.V.: The temporal logic institution. Technical report 9805, Ludwig-Maximilians-Universität München, Institut für Informatik, November 1998Google Scholar
  9. 9.
    Cîrstea, C.: An institution of modal logics for coalgebras. J. Log. Algebraic Program. 67(1–2), 87–113 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first-order logic. Math. Struct. Comput. Sci. 26(5), 745–788 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Diaconescu, R., Stefaneas, P.: Ultraproducts and possible worlds semantics in institutions. Theoret. Comput. Sci. 379(1–2), 210–230 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Finger, M., Gabbay, D.: Adding a temporal dimension to a logic system. J. Logic Lang. Inform. 1(3), 203–233 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fitting, M.: Logics with several modal operators. Theoria 35, 259–266 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gabbay, D.: Fibred semantics and the weaving of logics: part 1. J. Symb. Log. 61(4), 1057–1120 (1996)CrossRefzbMATHGoogle Scholar
  15. 15.
    Găină, D.: Birkhoff style calculi for hybrid logics. Formal Asp. Comput. 29, 1–28 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goguen, J.A.: A categorical manifesto. Math. Struct. Comput. Sci. 1(1), 49–67 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. ACM 39, 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goguen, J.A., Meseguer, J.: Models and equality for logical programming. In: Ehrig, H., Kowalski, R., Levi, G., Montanari, U. (eds.) TAPSOFT 1987. LNCS, vol. 250, pp. 1–22. Springer, Heidelberg (1987).  https://doi.org/10.1007/BFb0014969 CrossRefGoogle Scholar
  19. 19.
    Madeira, A., Martins, M.A., Barbosa, L.S., Hennicker, R.: Refinement in hybridised institutions. Formal Asp. Comput. 27(2), 375–395 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 283–297. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-22944-2_20 CrossRefGoogle Scholar
  21. 21.
    Mossakowski, T., Goguen, J., Diaconescu, R., Tarlecki, A.: What is a logic? In: Beziau, J.Y. (ed.) Logica Universalis, pp. 111–133. Birkhäuser Basel (2007)Google Scholar
  22. 22.
    Mossakowski, T., Maeder, C., Lüttich, K.: The heterogeneous tool set, Hets. In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 519–522. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71209-1_40 CrossRefGoogle Scholar
  23. 23.
    Mossakowski, T., Roggenbach, M.: Structured CSP – a process algebra as an institution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 92–110. Springer, Heidelberg (2007).  https://doi.org/10.1007/978-3-540-71998-4_6 CrossRefGoogle Scholar
  24. 24.
    Neves, R., Madeira, A., Barbosa, L.S., Martins, M.A.: Asymmetric combination of logics is functorial: a survey (extended version). arXiv preprint arXiv:1611.04170 (2017)
  25. 25.
    Neves, R., Madeira, A., Martins, M., Barbosa, L.: An institution for alloy and its translation to second-order logic. In: Bouabana-Tebibel, T., Rubin, S.H. (eds.) Integration of Reusable Systems. AISC, vol. 263, pp. 45–75. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-04717-1_3 CrossRefGoogle Scholar
  26. 26.
    Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Hybridisation at work. In: Heckel, R., Milius, S. (eds.) CALCO 2013. LNCS, vol. 8089, pp. 340–345. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40206-7_28 CrossRefGoogle Scholar
  27. 27.
    Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Proof theory for hybrid(ised) logics. Sci. Comput. Program. 126, 73–93 (2016)CrossRefGoogle Scholar
  28. 28.
    Neves, R., Martins, M.A., Barbosa, L.S.: Completeness and decidability results for hybrid(ised) logics. In: Braga, C., Martí-Oliet, N. (eds.) SBMF 2014. LNCS, vol. 8941, pp. 146–161. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15075-8_10 Google Scholar
  29. 29.
    Rasga, J., Sernadas, A., Sernadas, C.: Importing logics: soundness and completeness preservation. Stud. Logica 101(1), 117–155 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. EATCS Monographs on Theoretical Computer Science. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-17336-3 CrossRefzbMATHGoogle Scholar
  31. 31.
    Segerberg, K.: Two-dimensional modal logic. J. Philos. Log. 2(1), 77–96 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sernadas, A., Sernadas, C., Caleiro, C.: Fibring of logics as a categorial construction. J. Log. Comput. 9(2), 149–179 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Thomason, R.H.: Combinations of tense and modality. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic: Volume II: Extensions of Classical Logic, pp. 135–165. Reidel, Dordrecht (1984)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  • Renato Neves
    • 1
    Email author
  • Alexandre Madeira
    • 2
  • Luis S. Barbosa
    • 2
  • Manuel A. Martins
    • 3
  1. 1.INESC TEC (HASLab)Universidade do MinhoBragaPortugal
  2. 2.QuantaLab, INESC TEC (HASLab)Universidade do MinhoBragaPortugal
  3. 3.CIDMA – Department of MathematicsUniversidade de AveiroAveiroPortugal

Personalised recommendations