The Distributed Ontology, Model and Specification Language – DOL

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10644)

Abstract

Over the last decades, the WADT community has studied the formal specification of software (and hardware) in great detail [1, 9, 42].

Notes

Acknowledgements

The author wishes to thank the community that has developed DOL, in particular Mihai Codescu, Michael Gruninger, Maria Keet, Alexander Knapp, Oliver Kutz, Christoph Lange and Fabian Neuhaus, as well as those OMG members that have provided valuable feedback, in particular Conrad Bock, Elisa Kendall, Pete Rivett and Ed Seidewitz.

References

  1. 1.
    Astesiano, E., Kreowski, H.-J., Krieg-Brückner, B.: Algebraic Foundations of Systems Specification. Springer, Heidelberg (1999).  https://doi.org/10.1007/978-3-642-59851-7 CrossRefMATHGoogle Scholar
  2. 2.
    Bernot, G., Coudert, S., Le Gall, P.: Towards heterogeneous formal specifications. In: Wirsing, M., Nivat, M. (eds.) AMAST 1996. LNCS, vol. 1101, pp. 458–472. Springer, Heidelberg (1996).  https://doi.org/10.1007/BFb0014333 CrossRefGoogle Scholar
  3. 3.
    Bidoit, M., Mosses, P.D.: Casl—The Common Algebraic Specification Language: User Manual. LNCS, vol. 2900. Springer, Heidelberg (2004).  https://doi.org/10.1007/b11968 MATHGoogle Scholar
  4. 4.
    Borgida, A., Serafini, L.: Distributed description logics: assimilating information from peer sources. J. Data Semant. 1, 153–184 (2003)CrossRefMATHGoogle Scholar
  5. 5.
    Borzyszkowski, T.: Logical systems for structured specifications. Theoret. Comput. Sci. 286, 197–245 (2002)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Burstall, R.M., Goguen, J.A.: The semantics of clear, a specification language. In: Bjøorner, D. (ed.) Abstract Software Specifications. LNCS, vol. 86, pp. 292–332. Springer, Heidelberg (1980).  https://doi.org/10.1007/3-540-10007-5_41 CrossRefGoogle Scholar
  7. 7.
    Calegari, D., Mossakowski, T., Szasz, N.: Heterogeneous verification in the context of model driven engineering. Sci. Comput. Program. 126, 3–30 (2016)CrossRefGoogle Scholar
  8. 8.
    Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-68679-8_23 CrossRefGoogle Scholar
  9. 9.
    Cerioli, M., Gogolla, M., Kirchner, H., Krieg-Brückner, B., Qian, Z., Wolf, M.: Algebraic System Specification and Development. A Survey and Annotated Bibliography, BISS monographs, vol. 3, 2nd edn. Shaker Verlag (1997)Google Scholar
  10. 10.
    Codescu, M., Mossakowski, T., Kutz, O.: A categorical approach to networks of aligned ontologies. J. Data Semant. 6(4), 155–197 (2017). https://doi.org/10.1007/s13740-017-0080-0 CrossRefGoogle Scholar
  11. 11.
    Codescu, M., Mossakowski, T., Sannella, D., Tarlecki, A.: Specification refinements: calculi, tools, and applications. Sci. Comput. Program. 144, 1–49 (2017). https://doi.org/10.1016/j.scico.2017.04.005 CrossRefGoogle Scholar
  12. 12.
    Coudert, S., Bernot, G., Le Gall, P.: Hierarchical heterogeneous specifications. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 107–121. Springer, Heidelberg (1999).  https://doi.org/10.1007/3-540-48483-3_8 CrossRefGoogle Scholar
  13. 13.
    David, J., Euzenat, J., Scharffe, F., Trojahn dos Santos, C.: The alignment API 4.0. Semant. Web 2(1), 3–10 (2011)Google Scholar
  14. 14.
    Diaconescu, R.: Grothendieck institutions. Appl. Cat. Struct. 10, 383–402 (2002)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Enderton, H.B.: A Mathematical Introduction to Logic. Academic Press, Cambridge (1972)MATHGoogle Scholar
  16. 16.
    Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38721-0 CrossRefMATHGoogle Scholar
  17. 17.
    Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and programming. J. Assoc. Comput. Mach. 39, 95–146 (1992). Predecessor in: LNCS 164, 221–256 (1984)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Goguen, J., Kirchner, C., Kirchner, H., Mégrelis, A., Meseguer, J., Winkler, T.: An introduction to OBJ 3. In: Kaplan, S., Jouannaud, J.-P. (eds.) CTRS 1987. LNCS, vol. 308, pp. 258–263. Springer, Heidelberg (1988).  https://doi.org/10.1007/3-540-19242-5_22 CrossRefGoogle Scholar
  19. 19.
    Ibañez, Y.A., Mossakowski, T., Sannella, D., Tarlecki, A.: Modularity of ontologies in an arbitrary institution. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 361–379. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-23165-5_17 CrossRefGoogle Scholar
  20. 20.
    Knapp, A., Mossakowski, T., Roggenbach, M.: Towards an institutional framework for heterogeneous formal development in UML—a position paper. In: De Nicola, R., Hennicker, R. (eds.) Software, Services, and Systems. LNCS, vol. 8950, pp. 215–230. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-15545-6_15 CrossRefGoogle Scholar
  21. 21.
    Konev, B., Lutz, C., Walther, D., Wolter, F.: Formal properties of modularisation. In: Stuckenschmidt, H., Parent, C., Spaccapietra, S. (eds.) Modular Ontologies. LNCS, vol. 5445, pp. 25–66. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01907-4_3 CrossRefGoogle Scholar
  22. 22.
    Kutz, O., Mossakowski, T., Lücke, D.: Carnap, Goguen, and the hyperontologies: logical pluralism and heterogeneous structuring in ontology design. Log. Univers. 4(2), 255–333 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lucanu, D., Li, Y.F., Dong, J.S.: Semantic web languages – towards an institutional perspective. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation. LNCS, vol. 4060, pp. 99–123. Springer, Heidelberg (2006).  https://doi.org/10.1007/11780274_6 CrossRefGoogle Scholar
  24. 24.
    Lutz, C., Wolter, F.: Foundations for uniform interpolation and forgetting in expressive description logics. In: Walsh, T. (ed.) IJCAI, pp. 989–995. IJCAI/AAAI (2011)Google Scholar
  25. 25.
    Maibaum, T.S.E.: Conservative extensions, interpretations between theories and all that!. In: Bidoit, M., Dauchet, M. (eds.) CAAP 1997. LNCS, vol. 1214, pp. 40–66. Springer, Heidelberg (1997).  https://doi.org/10.1007/BFb0030588 CrossRefGoogle Scholar
  26. 26.
    McCarthy, J.: Circumscription - a form of non-monotonic reasoning. Artif. Intell. 13(1–2), 27–39 (1980)CrossRefMATHGoogle Scholar
  27. 27.
    Mossakowski, T.: Comorphism-based Grothendieck logics. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 593–604. Springer, Heidelberg (2002).  https://doi.org/10.1007/3-540-45687-2_49 CrossRefGoogle Scholar
  28. 28.
    Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Habilitation thesis, University of Bremen (2005)Google Scholar
  29. 29.
    Mossakowski, T., Autexier, S., Hutter, D.: Development graphs - proof management for structured specifications. J. Logic Algebraic Program. 67(1–2), 114–145 (2006)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Mossakowski, T., Sannella, D., Tarlecki, A.: A simple refinement language for Casl. In: Fiadeiro, J.L., Mosses, P.D., Orejas, F. (eds.) WADT 2004. LNCS, vol. 3423, pp. 162–185. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-31959-7_10 CrossRefGoogle Scholar
  31. 31.
    Mossakowski, T., Codescu, M., Neuhaus, F., Kutz, O.: The distributed ontology, modelling and specification language - DOL. In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic-Festschrift for 50th birthday of Jean-Yves Beziau, Volume II, Studies in Universal Logic. Birkhäuser (2015)Google Scholar
  32. 32.
    Mossakowski, T., Kutz, O.: The onto-logical translation graph. In: Kutz, O., Schneider, T. (eds.) Modular Ontologies. IOS, Amsterdam (2011)Google Scholar
  33. 33.
    Mossakowski, T., Kutz, O., Codescu, M., Lange, C.: The distributed ontology, modeling and specification language. In: Del Vescovo, C., Hahmann, T., Pearce, D., Walther, D. (eds.) Proceedings of the 7th International Workshop on Modular Ontologies (WoMO-13), CEUR-WS 1081 (2013)Google Scholar
  34. 34.
    Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-co-algebraic specification in CoCasl. J. Logic Algebraic Program. 67(1–2), 146–197 (2006)CrossRefMATHGoogle Scholar
  35. 35.
    Mossakowski, T., Tarlecki, A.: Heterogeneous logical environments for distributed specifications. In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486, pp. 266–289. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03429-9_18 CrossRefGoogle Scholar
  36. 36.
    Mossakowski, T., Tarlecki, A.: A relatively complete calculus for structured heterogeneous specifications. In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 441–456. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-54830-7_29 CrossRefGoogle Scholar
  37. 37.
    Mosses, P.D. (ed.): Casl Reference Manual. LNCS, vol. 2960. Springer, Heidelberg (2004).  https://doi.org/10.1007/b96103 MATHGoogle Scholar
  38. 38.
    Object Management Group. The distributed ontology, modeling, and specification language (DOL) (2016). OMG standard http://www.omg.org/spec/DOL
  39. 39.
    Rabe, F., Kohlhase, M.: A scalable module system. Inf. Comput. 230(1), 1–54 (2013)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Goguen, J., Roşu, G.: Composing hidden information modules over inclusive institutions. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 96–123. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-39993-3_7 CrossRefGoogle Scholar
  41. 41.
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Inf. Comput. 76, 165–210 (1988)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Development. EATCS Monographs in Theoretical Computer Science. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-17336-3 CrossRefMATHGoogle Scholar
  43. 43.
    Sannella, D., Wirsing, M.: Specification languages. In: Algebraic Foundations of Systems Specification [1], pp. 243–272Google Scholar
  44. 44.
    Tarlecki, A.: Towards heterogeneous specifications. In: Gabbay, D., de Rijke, M. (eds.) Frontiers of Combining Systems 2, 1998, Studies in Logic and Computation, pp. 337–360. Research Studies Press (2000)Google Scholar
  45. 45.
    Wang, Z., Wang, K., Topor, R.W., Pan, J.Z.: Forgetting for knowledge bases in DL-Lite. Ann. Math. Artif. Intell. 58(1–2), 117–151 (2010)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Wirsing, M.: Structured algebraic specifications: a kernel language. Theor. Comput. Sci. 42, 123–249 (1986)CrossRefMATHGoogle Scholar
  47. 47.
    Zimmermann, A., Krötzsch, M., Euzenat, J., Hitzler, P.: Formalizing ontology alignment and its operations with category theory. In: Proceedings of FOIS-06, pp. 277–288 (2006)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2017

Authors and Affiliations

  1. 1.Institute of Intelligent Cooperating SystemsOtto-von-Guericke-University MagdeburgMagdeburgGermany

Personalised recommendations