Skip to main content

A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1048))

Abstract

In recent era, nanoparticles (NPs) are widely used in food, medicine and body implants. Besides it’s wide use being a foreign particle it may have some noxious effect on the body. To understand the mechanistic role of NPs toxicity, Drosophila appeared to be a superior model organism. Toxicity of several nanoparticles were accessed using Drosophila. The NPs, after oral route of exposure enter into the gut, crosses the barrier of peritrophic membrane and induces apoptosis. The toxicity of NPs within gut resulted in developmental delay, with decrease in pupa count, fly hatching along with weight loss. The adult fly hatched after nanoparticle treatment shows increasing phenotypic defect in various sensory organs as well as in different body parts. Besides phenotypic defect some of the nanoparticle results altered behavioural phenotypes like larva crawling or adult climbing. Alteration of both phenotypic as well as behavioural assay clearly hints that signalling pathway like Notch, Wnt, EGFR etc. get affected due to exposure of nanoparticle. Results from various labs prove that nanoparticle can mediate developmental defect by altering signalling pathways. Since many of the signalling pathways are conserved the effect seen in model organisms cannot be overlooked. All the nanoparticles used in food and medicine should be modified to nullify the toxic effect before used in food and medicine.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Sanguansri P, Augustin MA (2006) Nanoscale materials development–a food industry perspective. Trends Food Sci Technol 17(10):547–556

    Article  CAS  Google Scholar 

  2. Panyam J, Labhasetwar V (2003) Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55(3):329–347

    Article  CAS  PubMed  Google Scholar 

  3. Krivorotova T, Cirkovas A, Maciulyte S et al (2016) Nisin-loaded pectin nanoparticles for food preservation. Food Hydrocoll 54:49–56

    Article  CAS  Google Scholar 

  4. Douglas S, Davis S, Illum L (1986) Nanoparticles in drug delivery. Crit Rev Ther Drug Carrier Syst 3(3):233–261

    Google Scholar 

  5. Wood NJ, Jenkinson HF, Davis SA et al (2015) Chlorhexidine hexametaphosphate nanoparticles as a novel antimicrobial coating for dental implants. J Mater Sci Mater Med 26(6):1–10

    Article  CAS  Google Scholar 

  6. Campos-Ortega JA, Hartenstein V (2013) The embryonic development of Drosophila melanogaster. Springer, Berlin

    Google Scholar 

  7. Pandey UB, Nichols CD (2011) Human disease models in Drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63(2):411–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Medzhitov R, Preston-Hurlburt P, Janeway CA (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388(6640):394–397

    Article  CAS  PubMed  Google Scholar 

  9. Yun Y, Cho YW, Park K (2013) Nanoparticles for oral delivery: targeted nanoparticles with peptidic ligands for oral protein delivery. Adv Drug Deliv Rev 65(6):822–832

    Article  CAS  PubMed  Google Scholar 

  10. García M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Technol (Campinas) 30(3):573–581

    Article  Google Scholar 

  11. Ranjan S, Dasgupta N, Chakraborty AR et al (2014) Nanoscience and nanotechnologies in food industries: opportunities and research trends. J Nanopart Res 16(6):2464

    Article  Google Scholar 

  12. Fröhlich E, Roblegg E (2012) Models for oral uptake of nanoparticles in consumer products. Toxicology 291(1):10–17

    Article  PubMed  PubMed Central  Google Scholar 

  13. Benn T, Cavanagh B, Hristovski K et al (2010) The release of nanosilver from consumer products used in the home. J Environ Qual 39(6):1875–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gaiser BK, Fernandes TF, Jepson M et al (2009) Assessing exposure, uptake and toxicity of silver and cerium dioxide nanoparticles from contaminated environments. Environ Health 8(1):S2

    Article  PubMed  PubMed Central  Google Scholar 

  15. Fondevila M, Herrer R, Casallas M et al (2009) Silver nanoparticles as a potential antimicrobial additive for weaned pigs. Anim Feed Sci Technol 150(3):259–269

    Article  CAS  Google Scholar 

  16. Bouwmeester H, Dekkers S, Noordam M et al (2007) Health impact of nanotechnologies in food production. RIKILT, Wageningen

    Google Scholar 

  17. Bussiere P-O, Peyroux J, Chadeyron G et al (2013) Influence of functional nanoparticles on the photostability of polymer materials: recent progress and further applications. Polym Degrad Stab 98(12):2411–2418

    Article  CAS  Google Scholar 

  18. Shi L, Shan J, Ju Y et al (2012) Nanoparticles as delivery vehicles for sunscreen agents. Colloids Surf Physicochem Eng Aspects 396:122–129

    Article  CAS  Google Scholar 

  19. Wang Z, Xu H, Wu J et al (2011) Sensitive detection of Salmonella with fluorescent bioconjugated nanoparticles probe. Food Chem 125(2):779–784

    Article  CAS  Google Scholar 

  20. Xiao-e L, Green AN, Haque SA et al (2004) Light-driven oxygen scavenging by titania/polymer nanocomposite films. J Photochem Photobiol A Chem 162(2):253–259

    Article  Google Scholar 

  21. Cohen-Tanugi D, Grossman JC (2012) Water desalination across nanoporous graphene. Nano Lett 12(7):3602–3608

    Article  CAS  PubMed  Google Scholar 

  22. Qin J-J, Oo MH, Kekre KA (2007) Nanofiltration for recovering wastewater from a specific dyeing facility. Sep Purif Technol 56(2):199–203

    Article  CAS  Google Scholar 

  23. Neethirajan S, Jayas DS (2011) Nanotechnology for the food and bioprocessing industries. Food Bioprocess Technol 4(1):39–47

    Article  CAS  Google Scholar 

  24. Farhang B (2007) Nanotechnology and lipids. Lipid Technol 19(6):132–135

    Article  Google Scholar 

  25. Yezhelyev MV, Gao X, Xing Y et al (2006) Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 7(8):657–667

    Article  CAS  PubMed  Google Scholar 

  26. Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7(9):771–782

    Article  CAS  PubMed  Google Scholar 

  27. Rowe MD, Thamm DH, Kraft SL et al (2009) Polymer-modified gadolinium metal-organic framework nanoparticles used as multifunctional nanomedicines for the targeted imaging and treatment of cancer. Biomacromolecules 10(4):983–993

    Article  CAS  PubMed  Google Scholar 

  28. Kennedy LC, Bickford LR, Lewinski NA et al (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7(2):169–183

    Article  CAS  PubMed  Google Scholar 

  29. Kumari A, Yadav SK, Yadav SC (2010) Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces 75(1):1–18

    Article  CAS  PubMed  Google Scholar 

  30. Malam Y, Loizidou M, Seifalian AM (2009) Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci 30(11):592–599

    Article  CAS  PubMed  Google Scholar 

  31. Manchester M, Singh P (2006) Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliv Rev 58(14):1505–1522

    Article  CAS  PubMed  Google Scholar 

  32. Elhissi A, Ahmed W, Hassan IU et al (2011) Carbon nanotubes in cancer therapy and drug delivery. J Drug Deliv 2012:837327

    PubMed  PubMed Central  Google Scholar 

  33. Dobson J (2006) Magnetic nanoparticles for drug delivery. Drug Dev Res 67(1):55–60

    Article  CAS  Google Scholar 

  34. Alexiou C, Schmid RJ, Jurgons R et al (2006) Targeting cancer cells: magnetic nanoparticles as drug carriers. Eur Biophys J 35(5):446–450

    Article  CAS  PubMed  Google Scholar 

  35. Gupta AK, Naregalkar RR, Vaidya VD et al (2007) Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine 2:23–39

    Article  CAS  PubMed  Google Scholar 

  36. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16(10):2346

    Article  CAS  PubMed  Google Scholar 

  37. Huh AJ, Kwon YJ (2011) “Nanoantibiotics”: a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release 156(2):128–145

    Article  CAS  PubMed  Google Scholar 

  38. Sadat-Shojai M, Atai M, Nodehi A et al (2010) Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: synthesis and application. Dent Mater 26(5):471–482

    Article  CAS  PubMed  Google Scholar 

  39. Domingo C, Arcıs R, Osorio E et al (2003) Hydrolytic stability of experimental hydroxyapatite-filled dental composite materials. Dent Mater 19(6):478–486

    Article  CAS  PubMed  Google Scholar 

  40. Asgary S, Eghbal MJ, Parirokh M (2008) Sealing ability of a novel endodontic cement as a root-end filling material. J Biomed Mater Res A 87(3):706–709

    Article  PubMed  Google Scholar 

  41. Piconi C, Maccauro G (1999) Zirconia as a ceramic biomaterial. Biomaterials 20(1):1–25

    Article  CAS  PubMed  Google Scholar 

  42. Asharani P, Wu YL, Gong Z et al (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19(25):255102

    Article  CAS  PubMed  Google Scholar 

  43. Bar-Ilan O, Albrecht RM, Fako VE et al (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5(16):1897–1910

    Article  CAS  PubMed  Google Scholar 

  44. Pachura-Bouchet S, Blaise C, Vasseur P (2006) Toxicity of nonylphenol on the cnidarian Hydra attenuata and environmental risk assessment. Environ Toxicol 21(4):388–394

    Article  CAS  PubMed  Google Scholar 

  45. Khan FR, Paul KB, Dybowska AD et al (2015) Accumulation dynamics and acute toxicity of silver nanoparticles to Daphnia magna and Lumbriculus variegatus: implications for metal modeling approaches. Environ Sci Technol 49(7):4389–4397

    Article  CAS  PubMed  Google Scholar 

  46. Zeeshan M, Murugadas A, Ghaskadbi S et al (2016) ROS dependent copper toxicity in Hydra-biochemical and molecular study. Comp Biochem Physiol Part C Toxicol Pharmacol 185:1–12

    Article  Google Scholar 

  47. Yeo M-K, Kang M (2010) The effect of nano-scale Zn-doped TiO2 and pure TiO2 particles on Hydra magnipapillata. Mol Cell Toxicol 6(1):9–17

    Article  CAS  Google Scholar 

  48. Stuart JM, Segal E, Koller D et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255

    Article  CAS  PubMed  Google Scholar 

  49. Apidianakis Y, Rahme LG (2011) Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech 4(1):21–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lehane M (1997) Peritrophic matrix structure and function. Annu Rev Entomol 42(1):525–550

    Article  CAS  PubMed  Google Scholar 

  51. Kuraishi T, Binggeli O, Opota O et al (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci 108(38):15966–15971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Lemaitre B, Miguel-Aliaga I (2013) The digestive tract of Drosophila melanogaster. Annu Rev Genet 47:377–404

    Article  CAS  PubMed  Google Scholar 

  53. Jiang S, Teng CP, Puah WC et al (2015) Oral administration and selective uptake of polymeric nanoparticles in Drosophila larvae as an in vivo model. ACS Biomater Sci Eng 1(11):1077–1084

    Article  CAS  Google Scholar 

  54. Park J-H, Kwon JY (2011) Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells. PLoS One 6(12):e29022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nazir A, Mukhopadhyay I, Saxena D et al (2003) Evaluation of toxic potential of captan: Induction of hsp70 and tissue damage in transgenic drosophila melanogaster (hsp70-lacZ) Bg9. J Biochem Mol Toxicol 17(2):98–107

    Article  CAS  PubMed  Google Scholar 

  56. Manke A, Wang L, Rojanasakul Y (2013) Mechanisms of nanoparticle-induced oxidative stress and toxicity. Biomed Res Int 2013:942916

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ahamed M, Posgai R, Gorey TJ et al (2010) Silver nanoparticles induced heat shock protein 70, oxidative stress and apoptosis in Drosophila melanogaster. Toxicol Appl Pharmacol 242(3):263–269

    Article  CAS  PubMed  Google Scholar 

  58. Pompa PP, Vecchio G, Galeone A et al (2011) In vivo toxicity assessment of gold nanoparticles in Drosophila melanogaster. Nano Res 4(4):405–413

    Article  CAS  Google Scholar 

  59. Panacek A, Prucek R, Safarova D et al (2011) Acute and chronic toxicity effects of silver nanoparticles (NPs) on Drosophila melanogaster. Environ Sci Technol 45(11):4974–4979

    Article  CAS  PubMed  Google Scholar 

  60. Philbrook NA, Winn LM, Afrooz AN et al (2011) The effect of TiO 2 and Ag nanoparticles on reproduction and development of Drosophila melanogaster and CD-1 mice. Toxicol Appl Pharmacol 257(3):429–436

    Article  CAS  PubMed  Google Scholar 

  61. Labuschagne CF, Brenkman AB (2013) Current methods in quantifying ROS and oxidative damage in Caenorhabditis elegans and other model organism of aging. Ageing Res Rev 12(4):918–930

    Article  CAS  PubMed  Google Scholar 

  62. Pandey A, Chandra S, Chauhan LKS et al (2013) Cellular internalization and stress response of ingested amorphous silica nanoparticles in the midgut of Drosophila melanogaster. Biochim Biophys Acta (BBA) Gen Subj 1830(1):2256–2266

    Article  CAS  Google Scholar 

  63. Hirst SM, Karakoti A, Singh S et al (2013) Bio-distribution and in vivo antioxidant effects of cerium oxide nanoparticles in mice. Environ Toxicol 28(2):107–118

    Article  CAS  PubMed  Google Scholar 

  64. Ahmad J, Ahamed M, Akhtar MJ et al (2012) Apoptosis induction by silica nanoparticles mediated through reactive oxygen species in human liver cell line HepG2. Toxicol Appl Pharmacol 259(2):160–168

    Article  CAS  PubMed  Google Scholar 

  65. Sul OJ, Kim JC, Kyung TW et al (2010) Gold nanoparticles inhibited the receptor activator of nuclear factor-κb ligand (RANKL)-induced osteoclast formation by acting as an antioxidant. Biosci Biotechnol Biochem 74(11):2209–2213

    Article  CAS  PubMed  Google Scholar 

  66. Posgai R, Cipolla-McCulloch CB, Murphy KR et al (2011) Differential toxicity of silver and titanium dioxide nanoparticles on Drosophila melanogaster development, reproductive effort, and viability: size, coatings and antioxidants matter. Chemosphere 85(1):34–42

    Article  CAS  PubMed  Google Scholar 

  67. Vales G, Demir E, Kaya B et al (2013) Genotoxicity of cobalt nanoparticles and ions in Drosophila. Nanotoxicology 7(4):462–468

    Article  CAS  PubMed  Google Scholar 

  68. Vecchio G, Galeone A, Brunetti V et al (2012) Concentration-dependent, size-independent toxicity of citrate capped AuNPs in Drosophila melanogaster. PLoS One 7(1):e29980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sabella S, Brunetti V, Vecchio G et al (2011) Toxicity of citrate-capped AuNPs: an in vitro and in vivo assessment. J Nanopart Res 13(12):6821–6835

    Article  CAS  Google Scholar 

  70. Böhmert L, Girod M, Hansen U et al (2014) Analytically monitored digestion of silver nanoparticles and their toxicity on human intestinal cells. Nanotoxicology 8(6):631–642

    Article  PubMed  Google Scholar 

  71. Cao Y, Roursgaard M, Kermanizadeh A et al (2015) Synergistic effects of zinc oxide nanoparticles and fatty acids on toxicity to Caco-2 cells. Int J Toxicol 34(1):67–76

    Article  CAS  PubMed  Google Scholar 

  72. Kaiser JP, Roesslein M, Diener L et al (2013) Human health risk of ingested nanoparticles that are added as multifunctional agents to paints: an in vitro study. PLoS One 8(12):e83215

    Article  PubMed  PubMed Central  Google Scholar 

  73. De Angelis I, Barone F, Zijno A et al (2013) Comparative study of ZnO and TiO2 nanoparticles: physicochemical characterisation and toxicological effects on human colon carcinoma cells. Nanotoxicology 7(8):1361–1372

    Article  PubMed  Google Scholar 

  74. Fröhlich E, Meindl C, Roblegg E et al (2012) Cytotoxity of nanoparticles is influenced by size, proliferation and embryonic origin of the cells used for testing. Nanotoxicology 6(4):424–439

    Article  PubMed  Google Scholar 

  75. Gopinath P, Gogoi SK, Chattopadhyay A et al (2008) Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology 19(7):075104

    Article  CAS  PubMed  Google Scholar 

  76. Sabat D, Patnaik A, Ekka B et al (2016) Investigation of titania nanoparticles on behaviour and mechanosensory organ of Drosophila melanogaster. Physiol Behav 167:76–85

    Article  CAS  PubMed  Google Scholar 

  77. Haney MJ, Zhao Y, Li S et al (2011) Cell-mediated transfer of catalase nanoparticles from macrophages to brain endothelial, glial and neuronal cells. Nanomedicine 6(7):1215–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Huang N, Yan Y, Xu Y et al (2013) Alumina nanoparticles alter rhythmic activities of local interneurons in the antennal lobe of Drosophila. Nanotoxicology 7(2):212–220

    Article  CAS  PubMed  Google Scholar 

  79. Cooper RJ (2016) Adult neural stem cell differentiation and signaling is disrupted by low-level silver nanoparticle exposure in vitro

    Google Scholar 

  80. Zou J, Wang X, Zhang L et al (2015) Iron nanoparticles significantly affect the in vitro and in vivo expression of Id genes. Chem Res Toxicol 28(3):373–383

    Article  CAS  PubMed  Google Scholar 

  81. Rodrigues de Andrade HH, Reguly ML, Lehmann M (2004) Wing somatic mutation and recombination test. Drosophila Cytogenet Protoc 247:389–412

    Article  CAS  Google Scholar 

  82. Graf U, Moraga AA, Castro R et al (1994) Genotoxicity testing of different types of beverages in the Drosophila wing somatic mutation and recombination test. Food Chem Toxicol 32(5):423–430

    Article  CAS  PubMed  Google Scholar 

  83. Graf U, Würgler F, Katz A et al (1984) Somatic mutation and recombination test in Drosophila melanogaster. Environ Mol Mutagen 6(2):153–188

    Article  CAS  Google Scholar 

  84. Demir E, Vales G, Kaya B et al (2011) Genotoxic analysis of silver nanoparticles in Drosophila. Nanotoxicology 5(3):417–424

    Article  CAS  PubMed  Google Scholar 

  85. Vecchio G, Galeone A, Brunetti V et al (2012) Mutagenic effects of gold nanoparticles induce aberrant phenotypes in Drosophila melanogaster. Nanomed Nanotechnol Biol Med 8(1):1–7

    Article  CAS  Google Scholar 

  86. Liu X, Vinson D, Abt D et al (2009) Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environ Sci Technol 43(16):6357–6363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Raj A, Shah P, Agrawal N (2016) Ingestion of gold nanoparticles (AuNPs) affects survival in Drosophila in a dosedependent manner. Int J Sci Res 5(6)

    Google Scholar 

  88. Key SCS, Reaves D, Turner F et al (2011) Impacts of silver nanoparticle ingestion on pigmentation and developmental progression in Drosophila. Atlas J Biol 1(3):52–61

    Article  Google Scholar 

  89. Pappus SA, Ekka B, Sahu S et al (2017) A toxicity assessment of hydroxyapatite nanoparticles on development and behaviour of Drosophila melanogaster. J Nanopart Res 19(4):136

    Article  Google Scholar 

  90. Ren N, He B, Stone D et al (2006) The shavenoid gene of Drosophila encodes a novel actin cytoskeleton interacting protein that promotes wing hair morphogenesis. Genetics 172(3):1643–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Armstrong N, Ramamoorthy M, Lyon D et al (2013) Mechanism of silver nanoparticles action on insect pigmentation reveals intervention of copper homeostasis. PLoS One 8(1):e53186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chandra M, Anand KS (2017) Assessment of nicotine dependence in subjects with vascular dementia. Int J Res Med Sci 3(3):711–714

    Article  Google Scholar 

  93. Monalisa M, Sabat D, Ekka B et al (2017) Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster. J Nanopart Res 19(8):282

    Article  Google Scholar 

  94. Zhang H, Cicchetti G, Onda H et al (2003) Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112(8):1223–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li JJ, Hartono D, Ong C-N et al (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003

    Article  CAS  PubMed  Google Scholar 

  96. Alaraby M, Hernández A, Annangi B et al (2015) Antioxidant and antigenotoxic properties of CeO2 NPs and cerium sulphate: studies with Drosophila melanogaster as a promising in vivo model. Nanotoxicology 9(6):749–759

    Article  CAS  PubMed  Google Scholar 

  97. de Celis JF (2003) Pattern formation in the Drosophila wing: the development of the veins. BioEssays 25(5):443–451

    Article  PubMed  Google Scholar 

  98. Hulea L, Markovic Z, Topisirovic I et al (2016) Biomedical potential of mTOR modulation by nanoparticles. Trends Biotechnol 34(5):349–353

    Article  CAS  PubMed  Google Scholar 

  99. Wang B, Chen N, Wei Y et al (2012) Akt signaling-associated metabolic effects of dietary gold nanoparticles in Drosophila. Sci Rep 2:563

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kaya B, Marcos R, Yanikoğlu A et al (2004) Evaluation of the genotoxicity of four herbicides in the wing spot test of Drosophila melanogaster using two different strains. Mutat Res Genet Toxicol Environ Mutagen 557(1):53–62

    Article  CAS  Google Scholar 

  101. Gorth DJ, Rand DM, Webster TJ (2011) Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–350

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Anand AS, Prasad DN, Singh SB et al (2017) Chronic exposure of zinc oxide nanoparticles causes deviant phenotype in Drosophila melanogaster. J Hazard Mater 327:180–186

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Mr. Abhinandan Patnaik for providing the Drosophila defective eye images and Mr. Unnikanan P. for providing the defective abdomen images. S. A. Pappus is thankful to DST INSPIRE which enabled him to study the effect of oral intake of NP on Drosophila.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monalisa Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pappus, S.A., Mishra, M. (2018). A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes. In: Saquib, Q., Faisal, M., Al-Khedhairy, A., Alatar, A. (eds) Cellular and Molecular Toxicology of Nanoparticles. Advances in Experimental Medicine and Biology, vol 1048. Springer, Cham. https://doi.org/10.1007/978-3-319-72041-8_18

Download citation

Publish with us

Policies and ethics