Some Mathematical Notions Used in the Previous Chapters

  • Ludwik CzajaEmail author
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 27)


A binary relation, which connects elements of a set \( {\mathbb{X}} \) with elements of a set \( {\mathbb{Y}} \), is any subset of the Cartesian product \( {\mathbb{X}} \times {\mathbb{Y}} \).


  1. Czaja, L. (January 1988). Cause-effect structures. Information Processing Letters, 26, 313–319.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Czaja, L. (2002). Elementary cause-effect structures. Wydawnictwa: Uniwersytetu Warszawskiego.zbMATHGoogle Scholar
  3. Czaja, L. (1998). Cause-effect structures—structural and semantic properties revisited. Fundamenta Informaticae 33, 17–42, IOS Press.Google Scholar
  4. Petri, C. A. (1962). Kommunikation mit Automaten. Bonn: Institut für Instrumentelle Mathematik‚ Schriften des IIM Nr. 2, 1962.Google Scholar
  5. Raczunas, M. (1993). Remarks on the equivalence of c-e structures and Petri nets. Information Processing Letters, 45, 165–169.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Reisig, W. (1985). Petri nets: An introduction, monographs on theoretical computer science. Berlin: Springer.CrossRefGoogle Scholar
  7. Ustimenko, A. P. (1996). Algebra of two-level cause-effect structures. Information Processing Letters, 59, 325–330.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Ustimenko, A. P. (1998). Coloured cause-effect structures. Information Processing Letters, 68(5), 219–225.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Vistula UniversityWarsawPoland
  2. 2.Institute of InformaticsUniversity of WarsawWarsawPoland

Personalised recommendations