Skip to main content

Physical Instability: A Key Problem of Amorphous Drugs

  • Chapter
  • First Online:
Amorphous Drugs

Abstract

Physical instability of amorphous APIs is a complex problem and the major limitation which impedes the wider application of amorphous products in a common practice. There is a set of divergent factors which may cause that material under certain conditions will recrystallize losing the benefits resulting from its amorphous form. It is obvious that the successful implementation of amorphous drug is strictly related to the problem how to control its crystallization ability. Therefore, the debate on the stability of amorphous drug is in a large extent identified with the discussion about its crystallization ability. One should realize that dealing with crystallization is an inherent step of each stage of work with amorphous products. Thus, through understanding of API crystallization behavior is an obligatory starting point during the rational design of amorphous drug compositions maintaining stability for the desired period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruckenstein E, Djikaev YS (2005) Recent developments in the kinetic theory of nucleation. Adv Colloid Interface Sci 118(1–3):51–72. https://doi.org/10.1016/j.cis.2005.06.001

    Article  CAS  Google Scholar 

  2. Adrjanowicz K, Koperwas K, Szklarz G, Tarnacka M, Paluch M (2016) Exploring the crystallization tendency of glass-forming liquid Indomethacin in the T – p plane by finding different iso-invariant points. Cryst Growth Des 16(12):7000–7010. https://doi.org/10.1021/acs.cgd.6b01215

    Article  CAS  Google Scholar 

  3. Jungblut S, Dellago C (2016) Pathways to self-organization: crystallization via nucleation and growth. Eur Phys J E 39(8):1–38. https://doi.org/10.1140/epje/i2016-16077-6

    Article  CAS  Google Scholar 

  4. Sosso GC, Chen J, Cox SJ et al (2016) Crystal nucleation in liquids: open questions and future challenges in molecular dynamics simulations. Chem Rev 116(12):7078–7116. https://doi.org/10.1021/acs.chemrev.5b00744

    Article  CAS  Google Scholar 

  5. Garcıa-Ruiz JM (2003) Nucleation of protein crystals. J Sruct Biol 142:22–31. https://doi.org/10.1016/S1047-8477(03)00035-2

    Article  CAS  Google Scholar 

  6. Gerges J, Affouard F (2015) Predictive calculation of the crystallization tendency of model pharmaceuticals in the supercooled state from molecular dynamics simulations. J Phys Chem B 119(33):10768–10783. https://doi.org/10.1021/acs.jpcb.5b05557

    Article  CAS  Google Scholar 

  7. Kelton KF (1991) Crystal nucleation in liquids and glasses. Solid State Phys 45:75–177. https://doi.org/10.1016/S0081-1947(08)60144-7

    Article  CAS  Google Scholar 

  8. Kirkpatrick RJ (1975) Crystal growth from the melt: a review. Am Miner 60:798–814

    CAS  Google Scholar 

  9. Schmelzer JWP (2008) Crystal nucleation and growth in glass-forming melts: experiment and theory. J Non Cryst Solids 354(2–9):269–278. https://doi.org/10.1016/j.jnoncrysol.2007.06.103

    Article  CAS  Google Scholar 

  10. Trasi NS, Baird JA, Kestur US, Taylor LS (2014) Factors influencing crystal growth rates from undercooled liquids of pharmaceutical compounds. J Phys Chem B 118:9974–9982

    Article  CAS  Google Scholar 

  11. Nascimento MLF, Zanotto ED (2010) Does viscosity describe the kinetic barrier for crystal growth from the liquidus to the glass transition? J Chem Phys 133(17):174701–174701. https://doi.org/10.1063/1.3490793

    Article  CAS  Google Scholar 

  12. Andronis V, Zografi G (2000) Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J Non Cryst Solids 271(3):236–248. https://doi.org/10.1016/S0022-3093(00)00107-1

    Article  CAS  Google Scholar 

  13. Trasi NS, Taylor LS (2014) Nucleation and crystal growth of amorphous nilutamide – unusual low temperature behavior. CrystEngComm 16(31):7186–7195. https://doi.org/10.1039/c4ce00118d

    Article  CAS  Google Scholar 

  14. Trasi NS, Taylor LS (2012) Effect of polymers on nucleation and crystal growth of amorphous acetaminophen. CrystEngComm 14(16):5188–5197. https://doi.org/10.1039/c2ce25374g

    Article  CAS  Google Scholar 

  15. Shah N, Sandhu H, Choi DS, Chokshi H, Malick AW (2014) Amorphous solid dispersions: theory and practice. Springer, New York

    Book  Google Scholar 

  16. Graeser KA, Patterson JE, Zeitler JA, Gordon KC, Rades T (2009) Correlating thermodynamic and kinetic parameters with amorphous stability. Eur J Pharm Sci 37(3–4):492–498. https://doi.org/10.1016/j.ejps.2009.04.005

    Article  CAS  Google Scholar 

  17. Qiu Y, Chen Y, Zhang GGZ, Liu L, Porter WR (2009) Developing solid oral dosage forms: pharmaceutical theory and practice. Elsevier, Amsterdam

    Google Scholar 

  18. James PF (1985) Kinetics of crystal nucleation in silicate glasses. J Non Cryst Solids 73:517–540

    Article  CAS  Google Scholar 

  19. Schmelzer JWP, Abyzov AS, Fokin VM (2016) Thermodynamic aspects of pressure-induced crystallization: kauzmann pressure. Int J Appl Glas Sci 7(4):474–485. https://doi.org/10.1111/ijag.12251

  20. Bai XM, Li M (2006) Calculation of solid-liquid interfacial free energy: a classical nucleation theory based approach. J Chem Phys 124(124707):1–12. https://doi.org/10.1063/1.2184315

  21. Pirzadeh P, Beaudoin EN, Kusalik PG (2012) Interfacial free energy: an entropy portent to energy changes. Cryst Growth Des 12(1):124–128. https://doi.org/10.1021/cg200861e

    Article  CAS  Google Scholar 

  22. Pfister C-E (2009) Interface free energy or surface tension: definition and basic properties. arXiv:0911.5232v1 [cond-mat.stat-mech] 1–20

    Google Scholar 

  23. Wu DT, Gránásy L, Spaepen F (2004) Nucleation and the solid–liquid interfacial free energy. MRS Bull 29(12):945–950. https://doi.org/10.1557/mrs2004.265

    Article  CAS  Google Scholar 

  24. Jones DRH (1974) Review. The free energies of solid-liquid interfaces. J Mater Sci 9:1–17

    Article  CAS  Google Scholar 

  25. Laird BB, Davidchack RL (2005) Direct calculation of the crystal – melt interfacial free energy via molecular dynamics. J Phys Chem B 109:17802–17812

    Article  CAS  Google Scholar 

  26. Schmelzer JWP, Abyzov AS (2016) Crystallization of glass-forming liquids: specific surface energy. J Chem Phys 145(064512):1–10. https://doi.org/10.1063/1.4960342

    Google Scholar 

  27. Fokin VM, Zanotto ED, Yuritsyn NS, Schmelzer JWP (2006) Homogeneous crystal nucleation in silicate glasses: a 40 years perspective. J Non Cryst Solids 352(26–27):2681–2714. https://doi.org/10.1016/j.jnoncrysol.2006.02.074

    Article  CAS  Google Scholar 

  28. Cheng B, Tribello GA, Ceriotti M (2015) Solid-liquid interfacial free energy out of equilibrium. Phys Rev B 92(180102):1–5. https://doi.org/10.1103/PhysRevB.92.180102

  29. Tarjus G, Kivelson D (1995) Breakdown of the Stokes–Einstein relation in supercooled liquids. J Chem Phys 103(8):3071. https://doi.org/10.1063/1.470495

    Article  CAS  Google Scholar 

  30. Ngai KL, Magill JH, Plazek DJ (2000) Flow, diffusion and crystallization of supercooled liquids: revisited. J Chem Phys 112(4):1887–1892. https://doi.org/10.1063/1.480752

    Article  CAS  Google Scholar 

  31. Grzybowska K, Capaccioli S, Paluch M (2016) Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Adv Drug Deliv Rev 100:158–182. https://doi.org/10.1016/j.addr.2015.12.008

    Article  CAS  Google Scholar 

  32. Becker SR, Poole PH, Starr FW (2006) Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network forming liquid. 97(055901):1–4. doi:https://doi.org/10.1103/PhysRevLett.97.055901

  33. Zheng Q, Mauro JC (2017) Viscosity of glass-forming systems. J Am Ceram Soc 100:6–25. https://doi.org/10.1111/jace.14678

    Article  CAS  Google Scholar 

  34. Bohmer R, Ngai KL, Angell CA, Plazek DJ (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99(5):4201. https://doi.org/10.1063/1.466117

    Article  Google Scholar 

  35. Ediger MD, Angell CA, Nagel SR (1996) Supercooled liquids and glasses. J Phys Chem 100(31):13200–13212

    Article  CAS  Google Scholar 

  36. Vogel H (1921) Das temperaturabhangigkeitgesetz der viskosität von flüssigkeiten. J Phys Z 22:645–646

    CAS  Google Scholar 

  37. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    Article  CAS  Google Scholar 

  38. Tammann G, Hesse W (1926) Die abhängigkeit der viscosität von der temperatur bie unterkühlten flüssigkeiten. Z Anorg Allg Chem 156:245–257

    Article  Google Scholar 

  39. Hancock BC, Zografi G (1997) Characteristics and significance of the amorphous state in pharmaceutical systems. J Pharm Sci 86(1):1–12. https://doi.org/10.1021/js9601896

    Article  CAS  Google Scholar 

  40. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43(1):139–146. https://doi.org/10.1063/1.1696442

    Article  CAS  Google Scholar 

  41. Johari GP (2000) Contributions to the entropy of a glass and liquid, and the dielectric relaxation time. J Chem Phys 112:7518. https://doi.org/10.1063/1.481349

    Article  CAS  Google Scholar 

  42. Masiewicz E, Grzybowski A, Grzybowska K, Pawlus S, Pionteck J, Paluch M (2015) Adam-Gibbs model in the density scaling regime and its implications for the configurational entropy scaling. Sci Rep 5(13998):1–13. https://doi.org/10.1038/srep13998

    Google Scholar 

  43. Johari GP (2002) Localized molecular motions of β-relaxation and its energy landscape. J Non Cryst Solids 307–310:317–325

    Article  Google Scholar 

  44. Vogel M, Rossler E (2000) On the nature of slow β-process in simple glass formers: a 2H NMR Study. J Phys Chem B 104:4285–4287

    Article  CAS  Google Scholar 

  45. Ngai KL, Paluch M (2010) Classification of secondary relaxation in glass-formers based on dynamic properties. J Chem Phys 120(2):857–873. https://doi.org/10.1063/1.1630295

    Article  CAS  Google Scholar 

  46. Ngai KL, Capaccioli S (2008) Impact of the application of pressure on the fundamental understanding of glass. J Phys Condens Matter 20:244101. https://doi.org/10.1088/0953-8984/20/24/244101

    Article  CAS  Google Scholar 

  47. Capaccioli S, Prevosto D, Lucchesi M, Rolla PA, Casalini R, Ngai KL (2005) Identifying the genuine Johari-Goldstein β-relaxation by cooling, compressing, and aging small molecular glass-formers. J Non Cryst Solids 351:2643–2651. https://doi.org/10.1016/j.jnoncrysol.2005.03.071

    Article  CAS  Google Scholar 

  48. Koperwas K, Adrjanowicz K, Wojnarowska Z, Jedrzejowska A, Knapik J, Paluch M (2016) Glass-forming tendency of molecular liquids and the strength of the intermolecular attractions. Sci Rep 6:36934. https://doi.org/10.1038/srep36934

    Article  CAS  Google Scholar 

  49. Rams-Baron M, Wojnarowska Z, Grzybowska K et al (2015) Toward a better understanding of the physical stability of amorphous anti-inflammatory agents: the roles of molecular mobility and molecular interaction patterns. Mol Pharm 12(10):3628–3638. https://doi.org/10.1021/acs.molpharmaceut.5b00351

    Article  CAS  Google Scholar 

  50. Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 11(4):471–477

    Article  CAS  Google Scholar 

  51. Konno H, Taylor LS (2008) Ability of different polymers to inhibit the crystallization of amorphous felodipine in the presence of moisture. Pharm Res 25(4):969–978. https://doi.org/10.1007/s11095-007-9331-3

    Article  CAS  Google Scholar 

  52. Rumondor ACF, Marsac PJ, Stanford LA, Taylor LS (2009) Phase behavior of poly(vinylpyrrolidone) containing amorphous solid dispersions in the presence of moisture. Mol Pharm 6(5):1492–1505

    Article  CAS  Google Scholar 

  53. Avrami M (1940) Kinetics of phase change. II – Transformation time relations for random distribution of nuclei. J Chem Phys 8:212–224. https://doi.org/10.1063/1.1750631

    Article  CAS  Google Scholar 

  54. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103–1112. https://doi.org/10.1063/1.1750380

    Article  CAS  Google Scholar 

  55. Johnson W, Mehl R (1939) Reaction kinetics in processes of nucleation and growth. Trans AIME 135:416–442

    Google Scholar 

  56. Kolmogorov A (1937) A statistical theory for the crystallization of metals. Izv Acad Sci USSR, Ser Math 1:355–359

    Google Scholar 

  57. Napolitano S, Wübbenhorst M (2007) Monitoring the cold crystallization of poly(3-hydroxy butyrate) via dielectric spectroscopy. J Non Cryst Solids 353(47–51):4357–4361. https://doi.org/10.1016/j.jnoncrysol.2007.01.082

    Article  CAS  Google Scholar 

  58. Avramov I, Avramova K, Rüssel C (2005) New method to analyze data on overall crystallization kinetics. J Cryst Growth 285(3):394–399. https://doi.org/10.1016/j.jcrysgro.2005.08.024

    Article  CAS  Google Scholar 

  59. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas SD, Suryanarayanan R (2014) Mechanism of amorphous itraconazole stabilization in polymer solid dispersions: role of molecular mobility. Mol Pharm 11(11):4228–4237. https://doi.org/10.1021/mp5004515

    Article  CAS  Google Scholar 

  60. Kothari K, Ragoonanan V, Suryanarayanan R (2014) Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy states. Mol Pharm 11(9):3048–3055. doi:https://doi.org/10.1021/mp500229d.

  61. Bhardwaj SP, Arora KK, Kwong E, Templeton A, Clas S-D, Suryanarayanan R (2013) Correlation between molecular mobility and physical stability of amorphous itraconazole. Mol Pharm 10(2):694–700. https://doi.org/10.1021/mp300487u

    Article  CAS  Google Scholar 

  62. Mehta M, Ragoonanan V, McKenna GB, Suryanarayanan R (2016) Correlation between molecular mobility and physical stability in pharmaceutical glasses. Mol Pharm 13(4):1267–1277. https://doi.org/10.1021/acs.molpharmaceut.5b00853

    Article  CAS  Google Scholar 

  63. Mistry P, Suryanarayanan R (2016) Strength of drug-polymer interactions: implications for crystallization in dispersions. Cryst Growth Des 16(9):5141–5149. https://doi.org/10.1021/acs.cgd.6b00714

    Article  CAS  Google Scholar 

  64. Korhonen O, Bhugra C, Pikal MJ (2008) Correlation between molecular mobility and crystal growth of amorphous phenobarbital and phenobarbital with polyvinylpyrrolidone and L-proline. J Pharm Sci 97(9):3830. http://dx.doi.org/10.1002/jps.21273

  65. Caron V, Bhugra C, Pikal MJ (2010) Prediction of onset of crystallization in amorphous pharmaceutical systems: phenobarbital, nifedipine/PVP, and phenobarbital/PVP. J Pharm Sci 99(9):3887. http://dx.doi.org/10.1002/jps.22232

  66. Grzybowska K, Paluch M, Grzybowski A et al (2010) Molecular dynamics and physical stability of amorphous anti-inflammatory drug: celecoxib. J Phys Chem B 114(40):12792–12801. https://doi.org/10.1021/jp1040212

    Article  CAS  Google Scholar 

  67. Knapik J, Wojnarowska Z, Grzybowska K et al (2014) Physical stability of the amorphous anticholesterol agent (Ezetimibe): the role of molecular mobility. Mol Pharm 11(11):4280–4290. https://doi.org/10.1021/mp500498e

    Article  CAS  Google Scholar 

  68. Bhugra C, Rambhatla S, Bakri A et al (2007) Prediction of the onset of crystallization of amorphous sucrose below the calorimetric glass transition temperature from correlations with mobility. J Pharm Sci 96(5):1258–1269. https://doi.org/10.1002/jps.20918

    Article  CAS  Google Scholar 

  69. Bhugra C, Shmeis R, Krill SL, Pikal MJ (2008) Prediction of onset of crystallization from experimental relaxation times. II. Comparison between predicted and experimental onset times. J Pharm Sci 97(1):455–472. https://doi.org/10.1002/jps.21162

    Article  CAS  Google Scholar 

  70. Bhardwaj SP, Suryanarayanan R (2012) Molecular mobility as an effective predictor of the physical stability of amorphous trehalose. Mol Pharm 9(11):3209–3217. https://doi.org/10.1021/mp300302g

    Article  CAS  Google Scholar 

  71. Kolodziejczyk K, Paluch M, Grzybowska K et al (2013) Relaxation dynamics and crystallization study of sildenafil in the liquid and glassy states. Mol Pharm 10(6):2270–2282. https://doi.org/10.1021/mp300479r

    Article  CAS  Google Scholar 

  72. Mehta M, McKenna GB, Suryanarayanan R (2016) Molecular mobility in glassy dispersions. J Chem Phys 144(204506):1–11. https://doi.org/10.1063/1.4950768

  73. Szczurek J, Rams-Baron M, Knapik-Kowalczuk J et al (2017) Molecular dynamics, recrystallization behavior and water solubility of amorphous anticancer agent bicalutamide and its polyvinylpyrrolidone mixtures. Mol Pharm 14(4):1071–1081. https://doi.org/10.1021/acs.molpharmaceut.6b01007

    Article  CAS  Google Scholar 

  74. Shamblin SL, Tang X, Chang L, Hancock BC, Pikal MJ (1999) Characterization of the time scales of molecular motion in pharmaceutically important glasses. J Phys Chem B 103(20):4113–4121. https://doi.org/10.1021/jp983964+

    Article  CAS  Google Scholar 

  75. Hodge IM (1996) Strong and fragile liquids – a brief critique. J Non Cryst Solids 202:164–172

    Article  CAS  Google Scholar 

  76. Hancock BC, Shamblin SL (2001) Molecular mobility of amorphous pharmaceuticals determined using differential scanning calorimetry. Thermochim Acta 380(2):95–107. http://linkinghub.elsevier.com/retrieve/pii/S0040603101006633

    Article  CAS  Google Scholar 

  77. Descamps M (2016) Disordered pharmaceutical materials. Wiley-VCH, Weinheim

    Book  Google Scholar 

  78. Wojnarowska Z, Knapik J, Rams-Baron M et al (2016) Amorphous protic ionic systems as promising active pharmaceutical ingredients: the case of the sumatriptan succinate drug. Mol Pharm 13(3):1111–1122. https://doi.org/10.1021/acs.molpharmaceut.5b00911

    Article  CAS  Google Scholar 

  79. Wojnarowska Z, Roland CM, Kolodziejczyk K, Swiety-Pospiech A, Grzybowska K, Paluch M (2012) Quantifying the structural dynamics of pharmaceuticals in the glassy state. J Phys Chem Lett 3(10):1238–1241. https://doi.org/10.1021/jz300349a

    Article  CAS  Google Scholar 

  80. Wehn R, Lunkenheimer P, Loidl A (2007) Broadband dielectric spectroscopy and aging of glass formers. J Non-Cryst Solids 353:3862–3870. https://doi.org/10.1016/j.jnoncrysol.2007.03.023

    Article  CAS  Google Scholar 

  81. Casalini R, Roland CM (2009) Aging of the secondary relaxation to probe structural relaxation in the glassy state. Phys Rev Lett 102(3):1–4. https://doi.org/10.1103/PhysRevLett.102.035701

    Article  CAS  Google Scholar 

  82. Kaminski K, Adrjanowicz K, Kaminska E, Paluch M (2011) Probing of structural relaxation times in the glassy state of sucrose and trehalose based on dynamical properties of two secondary relaxation processes. Phys Rev E Stat Nonlinear Soft Matter Phys 83(6):1–8. https://doi.org/10.1103/PhysRevE.83.061502

    Google Scholar 

  83. Baghel S, Cathcart H, O’Reilly NJ (2016) Polymeric amorphous solid dispersions: a review of amorphization, crystallization, stabilization, solid-state characterization, and aqueous solubilization of biopharmaceutical classification system class II drugs. J Pharm Sci 105(9):2527–2544. https://doi.org/10.1016/j.xphs.2015.10.008

    Article  CAS  Google Scholar 

  84. Huang Y, Dai W-G (2014) Fundamental aspects of solid dispersion technology for poorly soluble drugs. Acta Pharm Sin B 4(1):18–25. https://doi.org/10.1016/j.apsb.2013.11.001

    Article  Google Scholar 

  85. Vasconcelos T, Marques S, das Neves J, Sarmento B (2016) Amorphous solid dispersions: rational selection of a manufacturing process. Adv Drug Deliv Rev 100:85–101. https://doi.org/10.1016/j.addr.2016.01.012

    Article  CAS  Google Scholar 

  86. Lehmkemper K, Kyeremateng SO, Heinzerling O, Degenhardt M, Sadowski G (2017) Long-term physical stability of PVP- and PVPVA-amorphous solid dispersions. Mol Pharm 14(1):157–171. https://doi.org/10.1021/acs.molpharmaceut.6b00763

    Article  CAS  Google Scholar 

  87. Tao J, Sun Y, Zhang GGZ, Yu L (2009) Solubility of small-molecule crystals in polymers: D-Mannitol in PVP, indomethacin in PVP/VA, and nifedipine in PVP/VA. Pharm Res 26(4):855–864. https://doi.org/10.1007/s11095-008-9784-z

    Article  CAS  Google Scholar 

  88. Sun YE, Tao J, Zhang GGZ, Yu L (2010) Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc. J Pharm Sci 99(9):4023–4031. https://doi.org/10.1002/jps.22251

    Article  CAS  Google Scholar 

  89. Mahieu A, Willart J-F, Dudognon E, Danède F, Descamps M (2013) A new protocol to determine the solubility of drugs into polymer matrixes. Mol Pharm 10:560–566

    Article  CAS  Google Scholar 

  90. Tian Y, Booth J, Meehan E, Jones DS, Li S, Andrews GP (2013) Construction of drug-polymer thermodynamic phase diagrams using Flory-Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm 10:236–248. https://doi.org/10.1021/mp300386v

    Article  CAS  Google Scholar 

  91. Donnelly C, Tian Y, Potter C, Jones DS, Andrews GP (2015) Probing the effects of experimental conditions on the character of drug-polymer phase diagrams constructed using Flory-Huggins theory. Pharm Res 32(1):167–179. https://doi.org/10.1007/s11095-014-1453-9

    Article  CAS  Google Scholar 

  92. Caron V, Tajber L, Corrigan OI, Healy AM (2011) A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone. Mol Pharm 8(2):532–542. https://doi.org/10.1021/mp1003674

    Article  CAS  Google Scholar 

  93. Knopp MM, Olesen NE, Holm P, Langguth P, Holm R, Rades T (2015) Influence of polymer molecular weight on drug-polymer solubility: a comparison between experimentally determined solubility in PVP and prediction derived from solubility in monomer. J Pharm Sci 104(9):2905–2912. https://doi.org/10.1002/jps.24410

    Article  CAS  Google Scholar 

  94. Knopp MM, Olesen NE, Holm P et al (2015) Evaluation of drug-polymer solubility curves through formal statistical analysis: comparison of preparation techniques. J Pharm Sci 104(1):44–51. https://doi.org/10.1002/jps.24207

    Article  CAS  Google Scholar 

  95. Higgis JS, Lipson JEG, White RP (2010) A simple approach to polymer mixture miscibility. Philos Trans R Soc A 368:1009–1025. https://doi.org/10.1098/rsta.2009.0215

    Article  CAS  Google Scholar 

  96. Lin D, Huang Y (2010) A thermal analysis method to predict the complete phase diagram of drug-polymer solid dispersions. Int J Pharm 399(1–2):109–115. https://doi.org/10.1016/j.ijpharm.2010.08.013

    Article  CAS  Google Scholar 

  97. Fox T (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123–132

    CAS  Google Scholar 

  98. Jenckel E, Heusch R (1953) Die erniedrigung der einfriertemperatur organischer glaser durch losungsmittel. Kolloid Z Z Polym 130:89–105

    Article  CAS  Google Scholar 

  99. Kwei TK (1984) The effect of hydrogen-bonding on the glass-transition temperatures of polymer mixtures. J Polym Sci C Polym Lett 22:307–313

    Article  CAS  Google Scholar 

  100. Baird JA, Taylor LS (2012) Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv Drug Deliv Rev 64(5):396–421. https://doi.org/10.1016/j.addr.2011.07.009

    Article  CAS  Google Scholar 

  101. Couchman PR, Karasz FE (1978) A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11(1):116–119

    Article  Google Scholar 

  102. Lu X, Weiss A (1992) Relationship between the glass transition temperature and the interaction parameter of miscible binary polymer blends. Macromolecules 25:3242–3246. https://doi.org/10.1021/ma00038a033

    Article  CAS  Google Scholar 

  103. Tu W, Wang Y, Li X et al (2015) Unveiling the dependence of glass transitions on mixing thermodynamics in miscible systems. Sci Rep 5:8500. https://doi.org/10.1038/srep08500

    Article  CAS  Google Scholar 

  104. Marsac PJ, Konno H, Taylor LS (2006) A comparison of the physical stability of amorphous felodipine and nifedipine systems. Pharm Res 23(10):2306–2316. https://doi.org/10.1007/s11095-006-9047-9

    Article  CAS  Google Scholar 

  105. Taylor LS, Zografi G (1997) Spectroscopic characterization of interactions between PVP and indomethacin in amorphous molecular dispersions. Pharm Res 14(12):1691–1698

    Article  CAS  Google Scholar 

  106. Vieira MGA, Da Silva MA, Dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47(3):254–263. https://doi.org/10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  107. Yuan X, Xiang TX, Anderson BD, Munson EJ (2015) Hydrogen bonding interactions in amorphous indomethacin and its amorphous solid dispersions with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl acetate) studied using 13C solid-state NMR. Mol Pharm 12(12):4518–4528. https://doi.org/10.1021/acs.molpharmaceut.5b00705

    Article  CAS  Google Scholar 

  108. Gupta P, Thilagavathi R, Chakraborti AK, Bansal AK (2005) Role of molecular interaction in stability of celecoxib-PVP amorphous systems. Mol Pharm 2(5):384–391. https://doi.org/10.1021/mp050004g

    Article  CAS  Google Scholar 

  109. Kothari K, Ragoonanan V, Suryanarayanan R (2015) The role of drug-polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions. Mol Pharm 12(1):162–170. https://doi.org/10.1021/mp5005146

    Article  CAS  Google Scholar 

  110. Xie T, Taylor LS (2016) Effect of temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J Pharm Sci 106:100–110. https://doi.org/10.1016/j.xphs.2016.06.017

    Article  CAS  Google Scholar 

  111. Miyazaki T, Yoshioka S, Aso Y, Kojima S (2004) Ability of polyvinylpyrrolidone and polyacrylic acid to inhibit the crystallization of amorphous acetaminophen. J Pharm Sci 93(11):2710–2717. https://doi.org/10.1002/jps.20182

    Article  CAS  Google Scholar 

  112. Kestur US, Taylor LS (2010) Role of polymer chemistry in influencing crystal growth rates from amorphous felodipine. CrystEngComm 12(8):2290–2397. https://doi.org/10.1039/c001905d

    Article  CAS  Google Scholar 

  113. Grzybowska K, Chmiel K, Knapik J, Grzybowski A, Jurkiewicz K, Paluch M (2017) Molecular factors governing the liquid and glassy states recrystallization of celecoxib in binary mixtures with excipients of different molecular weights. Mol Pharm 14(4):1154–1168. https://doi.org/10.1021/acs.molpharmaceut.6b01056

    Article  CAS  Google Scholar 

  114. Xiang TX, Anderson BD (2013) Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions. J Pharm Sci 102(3):876–891. https://doi.org/10.1002/jps.23353

    Article  CAS  Google Scholar 

  115. Xiang TX, Anderson BD (2012) Molecular dynamics simulation of amorphous indomethacine. Mol Pharm 10:102–114

    Article  CAS  Google Scholar 

  116. Matsumoto T, Zografi G (1999) Physical properties of solid molecular dispersions of indomethacin with poly(vinylpyrrolidone) and poly(vinylpyrrolidone-co-vinyl-acetate) in relation to indomethacin crystallization. Pharm Res 16(11):1722–1728

    Article  CAS  Google Scholar 

  117. LaFountaine JS, McGinity JW, Williams RO (2016) Challenges and strategies in thermal processing of amorphous solid dispersions: a review. AAPS PharmSciTech 17(1):43–55. https://doi.org/10.1208/s12249-015-0393-y

    Article  CAS  Google Scholar 

  118. Li J, Zhao J, Tao L et al (2015) The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, Free volume and glass transition. Pharm Res 32(2):500–515. https://doi.org/10.1007/s11095-014-1478-0

    Article  CAS  Google Scholar 

  119. Rey L, Galy J, Sautereau H, Simon GP, Cook WD (2004) PALS free volume and mechanical properties in dimethacrylate-based thermosets. Polym Int 53(5):557–568. https://doi.org/10.1002/pi.1432

    Article  CAS  Google Scholar 

  120. Chavan RB, Thipparaboina R, Kumar D, Shastri NR (2016) Co amorphous systems: a product development perspective. Int J Pharm 515(1–2):403–415. https://doi.org/10.1016/j.ijpharm.2016.10.043

    Article  CAS  Google Scholar 

  121. Chieng N, Aaltonen J, Saville D, Rades T (2009) Physical characterization and stability of amorphous indomethacin and ranitidine hydrochloride binary systems prepared by mechanical activation. Eur J Pharm Biopharm 71(1):47–54. https://doi.org/10.1016/j.ejpb.2008.06.022

    Article  CAS  Google Scholar 

  122. Allesø M, Chieng N, Rehder S, Rantanen J, Rades T, Aaltonen J (2009) Enhanced dissolution rate and synchronized release of drugs in binary systems through formulation: amorphous naproxen-cimetidine mixtures prepared by mechanical activation. J Control Release 136(1):45–53. https://doi.org/10.1016/j.jconrel.2009.01.027

    Article  CAS  Google Scholar 

  123. Tantishaiyakul V, Suknuntha K, Vao-Soongnern V (2010) Characterization of cimetidine-piroxicam coprecipitate interaction using experimental studies and molecular dynamic simulations. AAPS PharmSciTech 11(2):952–958. https://doi.org/10.1208/s12249-010-9461-5

    Article  CAS  Google Scholar 

  124. Knapik J, Wojnarowska Z, Grzybowska K et al (2016) Molecular dynamics and physical stability of amorphous nimesulide drug and its binary drug-polymer systems. Mol Pharm 13(6):1937–1946. https://doi.org/10.1021/acs.molpharmaceut.6b00115

    Article  CAS  Google Scholar 

  125. Yamamura S, Gotoh H, Sakamoto Y, Momose Y (2000) Physicochemical properties of amorphous precipitates of cimetidine-indomethacin binary system. Eur J Pharm Biopharm 49(3):259–265. https://doi.org/10.1016/S0939-6411(00)00060-6

    Article  CAS  Google Scholar 

  126. Löbmann K, Laitinen R, Grohganz H, Gordon KC, Strachan C, Rades T (2011) Coamorphous drug systems: enhanced physical stability and dissolution rate of indomethacin and naproxen. Mol Pharm 8(5):1919–1928. https://doi.org/10.1021/mp2002973

    Article  CAS  Google Scholar 

  127. Löbmann K, Strachan C, Grohganz H, Rades T, Korhonen O, Laitinen R (2012) Co-amorphous simvastatin and glipizide combinations show improved physical stability without evidence of intermolecular interactions. Eur J Pharm Biopharm 81(1):159–169. https://doi.org/10.1016/j.ejpb.2012.02.004

    Article  CAS  Google Scholar 

  128. Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Tajber L, Paluch M (2015) Molecular dynamics and physical stability of coamorphous ezetimib and indapamide mixtures. Mol Pharm 12(10):3610–3619. https://doi.org/10.1021/acs.molpharmaceut.5b00334

    Article  CAS  Google Scholar 

  129. Lim AW, Löbmann K, Grohganz H, Rades T, Chieng N (2016) Investigation of physical properties and stability of indomethacin-cimetidine and naproxen-cimetidine co-amorphous systems prepared by quench cooling, coprecipitation and ball milling. J Pharm Pharmacol 68(1):36–45. https://doi.org/10.1111/jphp.12494

    Article  CAS  Google Scholar 

  130. Löbmann K, Laitinen R, Grohganz H, Strachan C, Rades T, Gordon KC (2013) A theoretical and spectroscopic study of co-amorphous naproxen and indomethacin. Int J Pharm 453(1):80–87. https://doi.org/10.1016/j.ijpharm.2012.05.016

    Article  CAS  Google Scholar 

  131. Beyer A, Radi L, Grohganz H, Löbmann K, Rades T, Leopold CS (2016) Preparation and recrystallization behavior of spray-dried co-amorphous naproxen-indomethacin. Eur J Pharm Biopharm 104:72–81. https://doi.org/10.1016/j.ejpb.2016.04.019

    Article  CAS  Google Scholar 

  132. Shayanfar A, Jouyban A (2013) Drug-drug coamorphous systems: characterization and physicochemical properties of coamorphous atorvastatin with carvedilol and glibenclamide. J Pharm Innov 8(4):218–228. https://doi.org/10.1007/s12247-013-9162-1

    Article  Google Scholar 

  133. Suresh K, Mannava MKC, Nangia A (2014) A novel curcumin–artemisinin coamorphous solid: physical properties and pharmacokinetic profile. RSC Adv 4(102):58357–58361. https://doi.org/10.1039/C4RA11935E

    Article  CAS  Google Scholar 

  134. Dengale SJ, Ranjan OP, Hussen SS et al (2014) Preparation and characterization of co-amorphous ritonavir-indomethacin systems by solvent evaporation technique: improved dissolution behavior and physical stability without evidence of intermolecular interactions. Eur J Pharm Sci 62:57–64. https://doi.org/10.1016/j.ejps.2014.05.015

    Article  CAS  Google Scholar 

  135. Wairkar S, Gaud R (2015) Co-amorphous combination of nateglinide-metformin hydrochloride for dissolution enhancement. AAPS PharmSciTech 17(3):673–681. https://doi.org/10.1208/s12249-015-0371-4

    Article  CAS  Google Scholar 

  136. Dengale SJ, Hussen SS, Krishna BSM, Musmade PB, Gautham Shenoy G, Bhat K (2015) Fabrication, solid state characterization and bioavailability assessment of stable binary amorphous phases of ritonavir with quercetin. Eur J Pharm Biopharm 89:329–338. https://doi.org/10.1016/j.ejpb.2014.12.025

    Article  CAS  Google Scholar 

  137. Teja A, Musmade PB, Khade AB, Dengale SJ (2015) Simultaneous improvement of solubility and permeability by fabricating binary glassy materials of talinolol with naringin: solid state characterization, in-vivo in-situ evaluation. Eur J Pharm Sci 78:234–244. https://doi.org/10.1016/j.ejps.2015.08.002

    Article  CAS  Google Scholar 

  138. Renuka, Singh SK, Gulati M, Narang R (2015) Stable amorphous binary systems of glipizide and atorvastatin powders with enhanced dissolution profiles: formulation and characterization. Pharm Dev Technol 22(1):13–25. https://doi.org/10.3109/10837450.2015.1125921

    Google Scholar 

  139. Russo MG, Sancho MI, Silva LMA et al (2016) Looking for the interactions between omeprazole and amoxicillin in a disordered phase. An experimental and theoretical study. Spectrochim Acta A Mol Biomol Spectrosc 156:70–77. https://doi.org/10.1016/j.saa.2015.11.021

    Article  CAS  Google Scholar 

  140. Ueda H, Kadota K, Imono M, Ito T, Kunita A, Tozuka Y (2017) Co-amorphous formation induced by combination of tranilast and diphenhydramine hydrochloride. J Pharm Sci 106(1):123–128. https://doi.org/10.1016/j.xphs.2016.07.009

  141. Hamilton BD, Ha J, Hillmyer MA, Ward MD (2012) Manipulating crystal growth and polymorphism by confinement in nanoscale crystallization chambers. Acc Chem Res 45(3):414–423. https://doi.org/10.1021/ar200147v

    Article  CAS  Google Scholar 

  142. Knapik J, Wojnarowska Z, Grzybowska K, Jurkiewicz K, Stankiewicz A, Paluch M (2016) Stabilization of the amorphous ezetimibe drug by confining its dimension. Mol Pharm 13(4):1308–1316. https://doi.org/10.1021/acs.molpharmaceut.5b00903

    Article  CAS  Google Scholar 

  143. Bras AR, Fonseca IM, Dionisio M, Schonhals A, Affouard F, Correia NT (2014) Influence of nanoscale confinement on the molecular mobility of ibuprofen. J Phys Chem C 118:13857–13868

    Article  CAS  Google Scholar 

  144. Shen S-C, Ng WK, Chia L, Dong Y-C, Tan RBH (2010) Stabilized amorphous state of ibuprofen by co-spray drying with mesoporous SBA-15 to enhance dissolution properties. J Pharm Sci 99(4):1997–2007. http://dx.doi.org/10.1002/jps.21967

  145. Yani Y, Chow PS, Tan RBH (2016) Pore size effect on the stabilization of amorphous drug in a mesoporous material: insights from molecular simulation. Microporous Mesoporous Mater 221:117–122. https://doi.org/10.1016/j.micromeso.2015.09.029

    Article  CAS  Google Scholar 

  146. Cordeiro T, Santos AFM, Nunes G et al (2016) Accessing the physical state and molecular mobility of naproxen confined to nanoporous silica matrixes. J Phys Chem C 120(26):14390–14401. https://doi.org/10.1021/acs.jpcc.6b04078

    Article  CAS  Google Scholar 

  147. Dwyer LM, Michaelis VK, O’Mahony M, Griffin RG, Myerson AS (2015) Confined crystallization of fenofibrate in nanoporous silica. CrystEngComm 17:7922–7929. https://doi.org/10.1039/C5CE01148E

  148. Richert R (2011) Dynamics of nanoconfined supercooled liquids. Annu Rev Phys Chem 62:65–84. https://doi.org/10.1146/annurev-physchem-032210-103343

    Article  CAS  Google Scholar 

  149. Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behaviour at the nanometre size scale. J Phys Condens Matter 17(15):R461–R524. https://doi.org/10.1088/0953-8984/17/15/R01

    Article  CAS  Google Scholar 

  150. Morineau D, Xia Y, Alba-Simionesco C (2002) Finite-size and surface effects on the glass transition of liquid toluene confined in cylindrical mesopores. J Chem Phys 117(19):8966–8972. https://doi.org/10.1063/1.1514664

    Article  CAS  Google Scholar 

  151. Xu W, Riikonen J, Lehto VP (2013) Mesoporous systems for poorly soluble drugs. Int J Pharm 453(1):181–197. https://doi.org/10.1016/j.ijpharm.2012.09.008

    Article  CAS  Google Scholar 

  152. Watanabe T, Wakiyama N, Usui F, Ikeda M, Isobe T, Senna M (2001) Stability of amorphous indomethacin compounded with silica. Int J Pharm 226(1–2):81–91. https://doi.org/10.1016/S0378-5173(01)00776-1

    Article  CAS  Google Scholar 

  153. Kapoor S, Hegde R, Bhattacharyya AJ (2009) Influence of surface chemistry of mesoporous alumina with wide pore distribution on controlled drug release. J Control Release 140(1):34–39. https://doi.org/10.1016/j.jconrel.2009.07.015

    Article  CAS  Google Scholar 

  154. Mellaerts R, Aerts CA, Van Humbeeck J, Augustijns P, Van den Mooter G, Martens JA (2007) Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem Commun (13):1375–1377. doi:https://doi.org/10.1039/B616746b

  155. Heikkilla T, Salonen J, Tuura J et al (2007) Mesoporous silica material TUD-1 as a drug delivery system. Int J Pharm 331(1):133–138. https://doi.org/10.1016/j.ijpharm.2006.09.019

    Article  CAS  Google Scholar 

  156. Hu Y, Wang J, Zhi Z, Jiang T, Wang S (2011) Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci 363(1):410–417. https://doi.org/10.1016/j.jcis.2011.07.022

    Article  CAS  Google Scholar 

  157. Priemel PA, Grohganz H, Rades T (2016) Unintended and in situ amorphisation of pharmaceuticals. Adv Drug Deliv Rev 100:126–132. https://doi.org/10.1016/j.addr.2015.12.014

    Article  CAS  Google Scholar 

  158. Thakral NK, Mohapatra S, Stephenson GA, Suryanarayanan R (2015) Compression-induced crystallization of amorphous indomethacin in tablets – characterization of spatial heterogeneity by two-dimensional X-ray diffractometry. Mol Pharm 12:253–263. https://doi.org/10.1021/mp5005788

    Article  CAS  Google Scholar 

  159. Ayenew Z, Paudel A, Van Den Mooter G (2012) Can compression induce demixing in amorphous solid dispersions? A case study of naproxen-PVP K25. Eur J Pharm Biopharm 81(1):207–213. https://doi.org/10.1016/j.ejpb.2012.01.007

    Article  CAS  Google Scholar 

  160. Tonelli AE (1982) Conformational characteristics of poly(N-vinyl pyrrolidone). Polymer (Guildf) 23:676–680

    Article  CAS  Google Scholar 

  161. Singh A, Bharati A, Frederiks P et al (2016) Effect of compression on the molecular arrangement of itraconazole-Soluplus solid dispersions: induction of liquid crystals or exacerbation of phase separation? Mol Pharm 13:1879–1893. https://doi.org/10.1021/acs.molpharmaceut.6b00046

    Article  CAS  Google Scholar 

  162. Singh A, Van HJ, Van Den Mooter G (2014) A new twist in the old story-can compression induce mixing of phase separated solid dispersions? A case study of spray-dried miconazole-PVP VA64 solid dispersions. Pharm Res 31:3191–3200. https://doi.org/10.1007/s11095-014-1411-6

    Article  CAS  Google Scholar 

  163. Singh A, De Bisschop C, Schut H, Van Humbeeck J, Van Den Mooter G (2015) Compression effects on the phase behaviour of miconazol-poly(1-vinylpyrrolidone-co-vinyl acetate) solid dispersions-role of pressure, dwell time, and preparation method. J Pharm Sci 104:3366–3376. https://doi.org/10.1002/jps.24540

    Article  CAS  Google Scholar 

  164. Worku ZA, Aarts J, Van Den Mooter G (2014) Influence of compression forces on the structural stability of naproxen/PVP-VA 64 solid dispersions. Mol Pharm 11:1102–1108. https://doi.org/10.1021/mp5001313

    Article  CAS  Google Scholar 

  165. Adrjanowicz K, Koperwas K, Tarnacka M et al (2016) Changing the tendency of glass-forming liquid to crystallize by moving along different isolines in the T – p phase diagram. Cryst Growth Des 16(11):6263–6268. https://doi.org/10.1021/acs.cgd.6b00798

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rams-Baron, M., Jachowicz, R., Boldyreva, E., Zhou, D., Jamroz, W., Paluch, M. (2018). Physical Instability: A Key Problem of Amorphous Drugs. In: Amorphous Drugs. Springer, Cham. https://doi.org/10.1007/978-3-319-72002-9_5

Download citation

Publish with us

Policies and ethics