Latent Variable Modeling of Neural Population Dynamics



Neural activity is noisy (“stochastic”) and dynamic at various spatiotemporal scales. We consider a general class of latent variable models for characterizing neuronal population dynamics or analyzing various sorts of neural data. The inference of latent variable models can lead to novel solutions for signal detection, neural decoding, denoising, dimensionality reduction, and data visualization. We review general modeling and inference strategies for latent variable models. Finally, we illustrate our methods with several neuroscience applications using population spike trains recorded from the animal’s hippocampus and neocortices.



I would like to thank Emery N. Brown for the intellectual inspiration during my postdoctoral career and all coauthors who have contributed to previously published work. I also thank S.L. Hu and S.Z. Liu for assistance in preparing some figures. Reproduction of some copyrighted materials is granted from publishers. The work was partially supported by an NSF-CRCNS award IIS-1307645 from the US National Science Foundation and an NIH-CRCNS award R01-NS100065 from the NINDS.


  1. Aghagolzadeh, M., & Truccolo, W. (2016). Inference and decoding of motor cortex low-dimensional dynamics via latent state-space models. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(2), 272–282.Google Scholar
  2. Ames, K. C., Ryu, S. I., & Shenoy, K. V. (2014). Neural dynamics of reaching following incorrect or absent motor preparation. Neuron, 81(2), 438–451.Google Scholar
  3. Beal, M., & Ghahramani, Z. (2006). Variational Bayesian learning of directed graphical models. Bayesian Analysis, 1(4), 793–832.Google Scholar
  4. Buesing, L., Macke, J. H., & Sahani, M. (2012a). Learning stable, regularized latent models of neural population dynamics. Network: Computation in Neural Systems, 23, 24–47.Google Scholar
  5. Buesing, L., Macke, J. H., & Sahani, M. (2012b). Spectral learning of linear dynamics from generalised-linear observations with application to neural population data. In Advances in neural information processing systems (Vol. 25, pp. 1682–1690). New York: Curran Associates.Google Scholar
  6. Buonomano, D. V., & Laje, R. (2010). Population clocks: Motor timing with neural dynamics. Trends in Cognitive Science, 14, 520–527.Google Scholar
  7. Bushnell, M. C., Ceko, M., & Low, L. A. (2013). Cognitive and emotional control of pain and its disruption in chronic pain. Nature Review Neuroscience, 14, 502–511.Google Scholar
  8. Chen, Z. (2013). An overview of Bayesian methods for neural spike train analysis. Computational Intelligence and Neuroscience, 2013, 251905.Google Scholar
  9. Chen, Z. (2015a). Estimating latent attentional states based on simultaneous binary and continuous behavioral measures. Computational Intelligence in Neuroscience, 2015, 493769.Google Scholar
  10. Chen, Z. (Ed.). (2015b). Advanced state space methods in neural and clinical data. Cambridge: Cambridge University Press.Google Scholar
  11. Chen, Z. (2017). Unfolding representations of trajectory coding in neuronal population spike activity. In Proceedings of Conference on Information Sciences and Systems (CISS’17).Google Scholar
  12. Chen, Z., Barbieri, R., & Brown, E. N. (2010). State-space modeling of neural spike train and behavioral data. In K. Oweiss (Ed.), Statistical signal processing for neuroscience and neurotechnology (pp. 175–218). Amsterdam: Elsevier.Google Scholar
  13. Chen, Z., Gomperts, S. N., Yamamoto, J., & Wilson, M. A. (2014). Neural representation of spatial topology in the rodent hippocampus. Neural Computation, 26(1), 1–39.Google Scholar
  14. Chen, Z., Grosmark, A. D., Penagos, H., & Wilson, M. A. (2016a). Uncovering representations of sleep-associated hippocampal ensemble spike activity. Scientific Reports, 6, 32193.Google Scholar
  15. Chen, Z., Hu, S., Zhang, Q., & Wang, J. (2017b). Quickest detection of abrupt changes in neuronal ensemble spiking activity using model-based and model-free approaches. In Proceedings of 8th International IEEE/EMBS Conference on Neural Engineering (NER).Google Scholar
  16. Chen, G., King, J. A., Burgess, N., & O’Keefe, J. (2013). How vision and movement combine in the hippocampal place code. Proceedings of National Academy of Sciences USA, 110, 378–383.Google Scholar
  17. Chen, Z., Kloosterman, F., Brown, E. N., & Wilson, M. A. (2012). Uncovering spatial topology represented by rat hippocampal population neuronal codes. Journal of Computational Neuroscience, 33(2), 227–255.Google Scholar
  18. Chen, Z., Linderman, S., & Wilson, M. A. (2016b). Bayesian nonparametric methods for discovering latent structures of rat hippocampal ensemble spikes. In Proceedings of IEEE Workshop on Machine Learning for Signal Processing (pp. 1–6).Google Scholar
  19. Chen, Z., & Wilson, M. A. (2017). Deciphering neural codes of memory during sleep. Trends in Neurosciences, 40(5), 260–275.Google Scholar
  20. Chen, Z., Zhang, Q., Tong, A. P. S., Manders, T. R., & Wang, J. (2017a). Deciphering neuronal population codes for acute thermal pain. Journal of Neural Engineering, 14(3), 036023.Google Scholar
  21. Ching, W.-K., Huang, X., Ng, M. K., & Siu, T.-K. (2015). Markov chains: Models, algorithms and applications (2nd ed.). Berlin: Springer.Google Scholar
  22. Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A., & Bengio, Y. (2016). A Recurrent Latent Variable Model for Sequential Data. Technical report.
  23. Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu, S. I., et al. (2012). Neural population dynamics during reaching. Nature, 487, 51–56.Google Scholar
  24. Cunningham, J. P., & Yu, B. M. (2014). Dimensionality reduction for large-scale neural recordings. Nature Neuroscience, 17(11), 1500–1509.Google Scholar
  25. Curto, C., & Itskov, V. (2008). Cell groups reveal structure of stimulus space. PLoS Computational Biology, 4(10), e1000205.Google Scholar
  26. Dabaghian, Y., Cohn, A. G., & Frank, L. M. (2011). Topological coding in the hippocampus. In Computational modeling and simulation of intellect: Current state and future prospectives (pp. 293–320). Hershey: IGI Global.Google Scholar
  27. Dabaghian, Y., Memoli, F., Frank, L. M., & Carlsson, G. (2012). A topological paradigm for hippocampal spatial map formation using persistent homology. PLoS Computational Biology, 8(8), e1002581.Google Scholar
  28. Dahl, G., Yu, D., Deng, L., & Acero, A. (2012). Context-dependent, pre-trained deep neural networks for large vocabulary speech recognition. IEEE Transactions on Audio, Speech & Language Processing, 20(1), 30–42.Google Scholar
  29. Davidson, T. J., Kloostserman, F., & Wilson, M. A. (2009). Hippocampal replay of extended experience. Neuron, 63, 497–507.Google Scholar
  30. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1), 1–38.Google Scholar
  31. Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic analysis of neural encoding by point process adaptive filtering. Neural Computation, 16(5), 971–998.Google Scholar
  32. Feeney, D. F., Meyer, F. G., Noone, N., & Enoka, R. M. (2017). A latent low-dimensional common input drives a pool of motor neurons: A probabilistic latent state-space model. Journal of Neurophysiology, 117, 1690–1701.Google Scholar
  33. Fine, S., Singer, Y., & Tishby, N. (1998). The hierarchical hidden Markov model: Analysis and applications. Machine Learning, 32, 41–62.Google Scholar
  34. Fuchs, P. N., Peng, Y. B., Boyette-Davis, J. A., & Uhelski, M. L. (2014). The anterior cingulate cortex and pain processing. Frontiers in Integrative Neuroscience, 8, 35.Google Scholar
  35. Gao, Y., Archer, E., Paninski, L., & Cunningham, J. P. (2016). Linear dynamical neural population models through nonlinear embeddings. In Advances in Neural Information Processing Systems. New York: Curran Associates.Google Scholar
  36. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). Boca Raton, FL: Chapman & Hall/CRC Press.Google Scholar
  37. Gershman, S., & Blei, D. M. (2012). A tutorial on Bayesian nonparametric models. Journal of Mathematical Psychology, 56, 1–12.Google Scholar
  38. Ghahramani, Z., & Jordan, M. I. (1997). Factorial hidden Markov models. Machine Learning, 29(2), 245–273.Google Scholar
  39. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge, MA: MIT Press.Google Scholar
  40. Grosmark, A. D., & Buzsaki, G. (2016). Diversity in neural firing dynamics supports both rigid and learned hippocampal sequences. Science, 351, 1440–1443.Google Scholar
  41. Guédon, Y. (2003). Estimating hidden semi-Markov chains from discrete sequences. Journal of Computational and Graphical Statistics, 12, 604–639.Google Scholar
  42. Haggerty, D. C., & Ji, D. (2015a). Activities of visual cortical and hippocampal neurons co-fluctuate in freely-moving rats during spatial behavior. eLife, 4, e08902.Google Scholar
  43. Haggerty, D. C., & Ji, D. (2015b). Coordinated sequence replays between the visual cortex and hippocampus. In M. Matsuno (Ed.), Analysis and modeling of coordinated multi-neuronal activity (pp. 183–206). New York: Springer.Google Scholar
  44. Hu, S., Zhang, Q., Wang, J., & Chen, Z. (2017). A real-time rodent neural interface for deciphering acute pain signals from neuronal ensemble spike activity. In Proceedings of the 51st Asilomar Conference on Signals, Systems and Computers.Google Scholar
  45. Hu, S., Zhang, Q., Wang, J., & Chen, Z. (2018). Real-time particle filtering and smoothing algorithms for detecting abrupt changes in neural ensemble spike activity. Journal of Neurophysiology, in press.Google Scholar
  46. Ji, D., & Wilson, M. A. (2007). Coordinated memory replay in the visual cortex and hippocampus during sleep. Nature Neuroscience, 10, 100–107.Google Scholar
  47. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to variational methods for graphical models. Machine Learning, 37, 183–233.Google Scholar
  48. Jordan, M. I., & Sejnowski, T. J. (Eds.). (2001). Graphical models: Foundations of neural computation. Cambridge, MA: MIT Press.Google Scholar
  49. Kuo, C. C., & Yen, C. T. (2005). Comparison of anterior cingulate and primary somatosensory neuronal responses to noxious laser-heat stimuli in conscious, behaving rats. Journal of Neurophysiology, 94, 1825–1836.Google Scholar
  50. Kurihara, K., & Welling, M. (2009). Bayesian k-means as ‘maximization-expectation’ algorithm. Neural Computation, 21, 1145–1172.Google Scholar
  51. Latimer, K. L., Yates, J. L., Meister, M. L. R., Huk, A. C., & Pillow, J. W. (2015). Single-trial spike trains in parietal cortex reveal discrete steps during decision-making. Science, 349, 184–187.Google Scholar
  52. Lawhern, V., Wu, W., Hatsopoulos, N. G., & Paninski, L. (2010). Population decoding of motor cortical activity using a generalized linear model with hidden states. Journal of Neuroscience Methods, 189, 267–280.Google Scholar
  53. LeCun, Y., Bengio, Y., & Hinton, G. E. (2015). Deep learning. Nature, 521, 436–444.Google Scholar
  54. Lee, L.-M. (2011). High-order hidden Markov model and application to continuous mandarin digit recognition. Journal of Information Science and Engineering, 27(13), 1919–1930.Google Scholar
  55. Linderman, S., Johnson, M. J., Wilson, M. A., & Chen, Z. (2016). A Bayesian nonparametric approach for uncovering rat hippocampal population codes during spatial navigation. Journal of Neuroscience Methods, 263, 36–47.Google Scholar
  56. Liu, S., Grosmark, A. D., & Chen, Z. (2018). Methods for assessment of memory reactivation. Neural Computation, to appear.Google Scholar
  57. Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., & Sahani, M. (2012). Empirical models of spiking in neural populations. In Advances in neural information processing systems (Vol. 24). New York: Curran Associates.Google Scholar
  58. Michaels, J. A., Dann, B., & Scherberger, H. (2016). Neural population dynamics during reaching are better explained by a dynamical system than representational tuning. PLoS Computational Biology, 12(11), e1005175.Google Scholar
  59. Müller, P., Quintana, F. A., Jara, A., & Hanson, T. (2015). Bayesian nonparametric data analysis. Cham: Springer.Google Scholar
  60. O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.Google Scholar
  61. O’Keefe, J., & Nadel, L. (1978). The hippocampus as a cognitive map. London: Oxford University Press.Google Scholar
  62. Omigbodun, A., Doyle, W. K., Devinsky, O., & Gilja, V. (2016). Hidden-Markov factor analysis as a spatiotemporal model for electrocorticography. In Proceedings of IEEE Engineering in Medicine and Biology Conference (pp. 1632–1635).Google Scholar
  63. Pachitariu, M., Petreska, B., & Sahani, M. (2013). Recurrent linear models of simultaneously-recorded neural populations. In L. Bottou, C. J. C. Burges, M. Welling, Z. Ghahramani & K. Q. Weinberger (Eds.), Advances in neural information processing systems (Vol. 26). New York: Curran Associates.Google Scholar
  64. Pawitan, Y. (2001). In all likelihood: Statistical modeling and inference using likelihood. Oxford: Clarendon Press.Google Scholar
  65. Penny, W., Ghahramani, Z., & Friston, K. (2005). Bilinear dynamical systems. Philosophical Transactions of Royal Society of London B: Biological Sciences, 360, 983–993.Google Scholar
  66. Rivkind, A., & Barak, O. (2017). Local dynamics in trained recurrent neural networks. Physics Review Letter, 118, 258101.Google Scholar
  67. Robert, C. P. (2007). The Bayesian choice: From decision-theoretic foundations to computational implementation (2nd ed.). Berlin: Springer.Google Scholar
  68. Santhanam, G., Yu, B. M., Gija, V., Ryu, S. I., Afshar, A., Sahani, M., et al. (2009). Factor-analysis methods for higher-performance neural prostheses. Journal of Neurophysiology, 102(2), 1315–1330.Google Scholar
  69. Saul, L. K., & Jordan, M. I. (1999). Mixed memory Markov models: Decomposing complex stochastic processes as mixtures of simpler ones. Machine Learning, 37, 75–86.Google Scholar
  70. Saul, L. K., & Rahim, M. G. (2000). Markov processes on curves. Machine Learning, 41, 345–363.Google Scholar
  71. Smith, A. C., & Brown, E. N. (2003). Estimating a state-space model from point process observations. Neural Computation, 15(5), 965–991.Google Scholar
  72. Stevenson, I. H. (2016). Flexible models for spike count data with both over- and under-dispersion. Journal of Computational Neuroscience, 41, 29–43.Google Scholar
  73. Székely, G. J., & Rizzo, M. L. (2009). Brownian distance covariance. Annals of Applied Statistics, 3/4, 1233–1303.Google Scholar
  74. Teh, Y. W., Jordan, M. I., Beal, M. J., & Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of American Statistical Association, 101, 1566–1581.MathSciNetCrossRefGoogle Scholar
  75. Vierck, C. J., Whitsel, B. L., Favorov, O. V., Brown, A. W., & Tommerdahl, M. (2013). Role of primary somatosensory cortex in the coding of pains. Pain, 154, 334–344.CrossRefGoogle Scholar
  76. Vogelstein, J., Packer, A., Machado, T. A., Sippy, T., Babadi, B., Yuste, R., et al. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104, 3691–3704.CrossRefGoogle Scholar
  77. Vogelstein, J., Watson, B., Packer, A., Yuste, R., Jedynak, B., & Paninski, L. (2009). Spike inference from calcium imaging using sequential Monte Carlo methods. Biophysical Journal, 97(2), 636–655.CrossRefGoogle Scholar
  78. Wagner, T. D., Atlas, L. Y., Lindquist, M. A., Roy, M., Woo, C.-W., & Kross, E. (2013). An fMRI-based neurologic signature of physical pain. New England Journal of Medicine, 368, 1388–1397.CrossRefGoogle Scholar
  79. Whiteway, M. R., & Butts, D. A. (2017). Revealing unobserved factors underlying cortical activity with a rectified latent variable model applied to neural population recordings. Journal of Neurophysiology, 117, 919–936.CrossRefGoogle Scholar
  80. Wood, F., & Black, M. J. (2008). A nonparametric Bayesian alternative to spike sorting. Journal of Neuroscience Methods, 173(1), 1–12.CrossRefGoogle Scholar
  81. Wu, X., & Foster, D. (2014). Hippocampal replay captures the unique topological structure of a novel environment. Journal of Neuroscience, 34, 6459–6469.CrossRefGoogle Scholar
  82. Wu, W., Chen, Z., Gao, S., & Brown, E. N. (2011). A hierarchical Bayesian approach for learning sparse spatio-temporal decompositions of multichannel EEG. Neuroimage, 56(4), 1929–1945.CrossRefGoogle Scholar
  83. Wu, W., Kulkarni, J. E., Hatsopoulos, N. G., & Paninski, L. (2009). Neural decoding of hand motion using a linear state-space model with hidden states. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17, 370–378.CrossRefGoogle Scholar
  84. Wu, W., Nagarajan, S., & Chen, Z. (2016). Bayesian machine learning: EEG/MEG signal processing measurements. IEEE Signal Processing Magazine, 33(1), 14–36.CrossRefGoogle Scholar
  85. Wu, W., & Srivastava, A. (2011). An information-geometric framework for statistical inferences in the neural spike train space. Journal of Computational Neuroscience, 31, 725–748.MathSciNetCrossRefGoogle Scholar
  86. Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. Journal of Neurophysiology, 102(1), 614–635.CrossRefGoogle Scholar
  87. Yu, B. M., Kemere, C., Santhanam, G., Ryu, S. I., Meng, T. H., Sahani, M., et al. (2007). Mixture of trajectory models for neural decoding of goal-directed movements. Journal of Neurophysiology, 97, 3763–3780.CrossRefGoogle Scholar
  88. Yu, S.-Z. (2010). Hidden semi-Markov models. Artificial Intelligence, 174(2), 215–243.MathSciNetCrossRefGoogle Scholar
  89. Zhang, Y., Wang, N., Wang, J.-Y., Chang, J.-Y., Woodward, D. J., & Luo, F. (2011). Ensemble encoding of nociceptive stimulus intensity in the rat medial and lateral pain systems. Molecular Pain, 7, 64.CrossRefGoogle Scholar
  90. Zhao, Y., & Park, I. M. (2017). Variational latent Gaussian process for recovering single-trial dynamics from population spike trains. Neural Computation, 29, 1293–1316.CrossRefGoogle Scholar
  91. Zhou, F., De la Torre, F., & Hodgins, J. K. (2013). Hierarchical aligned cluster analysis for temporal clustering of human motion. IEEE Transactions Pattern Analysis and Machine Intelligence, 35(3), 582–596.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.New York University School of MedicineNew YorkUSA

Personalised recommendations