Skip to main content

From Physiological Signals to Pulsatile Dynamics: A Sparse System Identification Approach

  • Chapter

Abstract

Various brain signals including neuronal spiking activity have an impulsive profile that upon interactions with physiological or measurement processes lead to observed pulsatile experimental data. For example, neuroendocrine data and electrodermal activity data have a pulsatile nature. To characterize the pulsatile nature of such signals, we utilize physiological state-space models and optimization formulations that take advantage of the sparse nature of the underlying pulses. We illustrate that our methods are successful in characterizing pulsatile dynamics underlying pulsatile physiological data. In particular, we deconvolve cortisol and skin conductance data as well as concurrent cortisol and adrenocorticotropic data. Moreover, we design impulsive inputs for constant and circadian demands and holding costs on desired pulsatile profiles. Characterization of such pulsatile signals will aid our understanding of the pathological states related to these signals and has the potential to be used in designing bio-inspired pulsatile controllers; immediate applications include understanding normal and pathological neuroendocrine and affective states.

Keywords

  • Pulsatile Dynamics
  • Holding Cost
  • Pulsatile Profile
  • Skin Conductance Data
  • Momentum Profile

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-71976-4_10
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-71976-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 10.1
Fig. 10.2
Fig. 10.3
Fig. 10.4
Fig. 10.5

References

  • Attouch, H., Bolte, J., Redont, P., & Soubeyran, A. (2010). Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-łojasiewicz inequality. Mathematics of Operations Research, 35(2), 438–457.

    MathSciNet  CrossRef  Google Scholar 

  • Boufounos, P., Duarte, M. F., & Baraniuk, R. G. (2007). Sparse signal reconstruction from noisy compressive measurements using cross validation. In Proceedings of 14th IEEE Workshop on Statistical Signal Processing (SSP’07) (pp. 299–303). New York: IEEE.

    Google Scholar 

  • Brown, E. N., Meehan, P. M., & Dempster, A. P. (2001). A stochastic differential equation model of diurnal cortisol patterns. American Journal of Physiology-Endocrinology And Metabolism, 280(3), E450–E461.

    CrossRef  Google Scholar 

  • Candes, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted 1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.

    MathSciNet  CrossRef  Google Scholar 

  • Conrad, M., Hubold, C., Fischer, B., & Peters, A. (2009). Modeling the hypothalamus–pituitary–adrenal system: homeostasis by interacting positive and negative feedback. Journal of Biological Physics, 35(2), 149–162.

    CrossRef  Google Scholar 

  • Dallmant, M., & Yates, F. (1969). Dynamic asymmetries in the corticosteroid feedback path and distribution metabolism-binding elements of the adrenocortical system. Annals of the New York Academy of Sciences, 156(1), 696–721.

    CrossRef  Google Scholar 

  • Faghih, R. T. (2010). The FitzHugh-Nagumo model dynamics with an application to the hypothalamic pituitary adrenal axis. Master’s thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Faghih, R. T. (2014). System identification of cortisol secretion: Characterizing pulsatile dynamics. Ph.D. thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Faghih, R. T., Dahleh, M. A., Adler, G. K., Klerman, E. B., & Brown, E. N. (2014). Deconvolution of serum cortisol levels by using compressed sensing. PLoS ONE, 9(1), e85204.

    CrossRef  Google Scholar 

  • Faghih, R. T., Dahleh, M. A., Adler, G. K., Klerman, E. B., & Brown, E. N. (2015a). Quantifying pituitary-adrenal dynamics and deconvolution of concurrent cortisol and adrenocorticotropic hormone data by compressed sensing. IEEE Transactions on Biomedical Engineering, 62(10), 2379–2388.

    CrossRef  Google Scholar 

  • Faghih, R. T., Dahleh, M. A., & Brown, E. N. (2015b). An optimization formulation for characterization of pulsatile cortisol secretion. Frontiers in Neuroscience, 9, 228.

    CrossRef  Google Scholar 

  • Faghih, R. T., Savla, K., Dahleh, M. A., & Brown, E. N. (2011). A feedback control model for cortisol secretion. In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC) (pp. 716–719). New York: IEEE.

    Google Scholar 

  • Faghih, R. T., Stokes, P. A., Marin, M.-F., Zsido, R. G., Zorowitz, S., Rosenbaum, B. L., et al. (2015c). Characterization of fear conditioning and fear extinction by analysis of electrodermal activity. In Proceedings of 37th IEEE Conference on Engineering in Medicine and Biology Society (EMBC) (pp. 7814–7818). New York: IEEE.

    Google Scholar 

  • Fazel, M. (2002). Matrix rank minimization with applications. Ph.D. thesis, Stanford University.

    Google Scholar 

  • Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2), 215–223.

    MathSciNet  CrossRef  Google Scholar 

  • Gorodnitsky, I. F., & Rao, B. D. (1997). Sparse signal reconstruction from limited data using focuss: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3), 600–616.

    CrossRef  Google Scholar 

  • Gupta, S., Aslakson, E., Gurbaxani, B. M., & Vernon, S. D. (2007). Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability. Theoretical Biology and Medical Modelling, 4(1), 8.

    CrossRef  Google Scholar 

  • Hansen, P. C. (1999). The L-curve and its use in the numerical treatment of inverse problems. IMM, Department of Mathematical Modelling, Technical University of Denmark.

    Google Scholar 

  • He, Z., Xie, S., & Cichocki, A. (2012). On the convergence of focuss algorithm for sparse representation. arXiv preprint arXiv:1202.5470.

    Google Scholar 

  • Johnson, T. D. (2003). Bayesian deconvolution analysis of pulsatile hormone concentration profiles. Biometrics, 59(3), 650–660.

    MathSciNet  CrossRef  Google Scholar 

  • Keenan, D. M., Chattopadhyay, S., & Veldhuis, J. D. (2005). Composite model of time-varying appearance and disappearance of neurohormone pulse signals in blood. Journal of Theoretical Biology, 236(3), 242–255.

    MathSciNet  CrossRef  Google Scholar 

  • Kettyle, W. M., & Arky, R. A. (1998). Endocrine pathophysiology. Philadelphia: Lippincott Williams & Wilkins.

    Google Scholar 

  • Klerman, E. B., Goldenberg, D. L., Brown, E. N., Maliszewski, A. M., & Adler, G. K. (2001). Circadian rhythms of women with fibromyalgia. The Journal of Clinical Endocrinology & Metabolism, 86(3), 1034–1039.

    Google Scholar 

  • Kyrylov, V., Severyanova, L. A., & Vieira, A. (2005). Modeling robust oscillatory behavior of the hypothalamic-pituitary-adrenal axis. IEEE Transactions on Biomedical Engineering, 52(12), 1977–1983.

    CrossRef  Google Scholar 

  • Lidberg, L., & Wallin, B. G. (1981). Sympathetic skin nerve discharges in relation to amplitude of skin resistance responses. Psychophysiology, 18(3), 268–270.

    CrossRef  Google Scholar 

  • Lightman, S. L., & Conway-Campbell, B. L. (2010). The crucial role of pulsatile activity of the hpa axis for continuous dynamic equilibration. Nature Reviews Neuroscience, 11(10), 710.

    CrossRef  Google Scholar 

  • Linkowski, P., Mendlewicz, J., Leclercq, R., Brasseur, M., Hubain, P., Golstein, J., et al. (1985). The 24-hour profile of adrenocorticotropin and cortisol in major depressive illness. Journal of Clinical Endocrinology & Metabolism, 61(3), 429–438.

    CrossRef  Google Scholar 

  • Lobo, M. S., Fazel, M., & Boyd, S. (2007). Portfolio optimization with linear and fixed transaction costs. Annals of Operations Research, 152(1), 341–365.

    MathSciNet  CrossRef  Google Scholar 

  • Lönnebo, A., Grahnén, A., & Karlsson, M. O. (2007). An integrated model for the effect of budesonide on acth and cortisol in healthy volunteers. British Journal of Clinical Pharmacology, 64(2), 125–132.

    CrossRef  Google Scholar 

  • McMaster, A., Jangani, M., Sommer, P., Han, N., Brass, A., Beesley, S., et al. (2011). Ultradian cortisol pulsatility encodes a distinct, biologically important signal. PLoS ONE, 6(1), e15766.

    CrossRef  Google Scholar 

  • Murray, J. F. (2005). Visual recognition, inference and coding using learned sparse overcomplete representations. Ph.D. thesis, University of California, San Diego.

    Google Scholar 

  • Peters, A., Conrad, M., Hubold, C., Schweiger, U., Fischer, B., & Fehm, H. L. (2007). The principle of homeostasis in the hypothalamus-pituitary-adrenal system: new insight from positive feedback. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293(1), R83–R98.

    CrossRef  Google Scholar 

  • Refetoff, S., Van Cauter, E., Fang, V., Laderman, C., Graybeal, M., & Landau, R. (1985). The effect of dexamethasone on the 24-hour profiles of adrenocorticotropin and cortisol in cushing’s syndrome. Journal of Clinical Endocrinology & Metabolism, 60(3), 527–535.

    CrossRef  Google Scholar 

  • Rhee, S. S., & Pearce, E. N. (2011). The endocrine system and the heart: a review. Revista Española de Cardiología (English Edition), 64(3), 220–231.

    CrossRef  Google Scholar 

  • Sarabdjitsingh, R., Joëls, M., & De Kloet, E. (2012). Glucocorticoid pulsatility and rapid corticosteroid actions in the central stress response. Physiology & Behavior, 106(1), 73–80.

    CrossRef  Google Scholar 

  • Savić, D., & Jelić, S. (2005). A mathematical model of the hypothalamo-pituitary-adrenocortical system and its stability analysis. Chaos, Solitons & Fractals, 26(2), 427–436.

    CrossRef  Google Scholar 

  • Sethi, S. P., & Thompson, G. L. (2006). Optimal control theory: Applications to management science and economics. New York: Springer.

    MATH  Google Scholar 

  • Spiga, F., Waite, E. J., Liu, Y., Kershaw, Y. M., Aguilera, G., & Lightman, S. L. (2011). Acth-dependent ultradian rhythm of corticosterone secretion. Endocrinology, 152(4), 1448–1457.

    CrossRef  Google Scholar 

  • Stavreva, D. A., Wiench, M., John, S., Conway-Campbell, B. L., McKenna, M. A., Pooley, J. R., et al. (2009). Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nature Cell Biology, 11(9), 1093.

    CrossRef  Google Scholar 

  • Ten, S., New, M., & Maclaren, N. (2001). Addison’s disease 2001. Journal of Clinical Endocrinology & Metabolism, 86(7), 2909–2922.

    Google Scholar 

  • Van Cauter, E. (1981). Quantitative methods for the analysis of circadian and episodic hormone fluctuations. In Human pituitary hormones (pp. 1–28). Dordrecht: Springer.

    CrossRef  Google Scholar 

  • Veldhuis, J. D., Iranmanesh, A., Lizarralde, G., & Johnson, M. L. (1989). Amplitude modulation of a burstlike mode of cortisol secretion subserves the circadian glucocorticoid rhythm. American Journal of Physiology-Endocrinology And Metabolism, 257(1), E6–E14.

    CrossRef  Google Scholar 

  • Vidal, A., Zhang, Q., Médigue, C., Fabre, S., & Clément, F. (2012). Dynpeak: An algorithm for pulse detection and frequency analysis in hormonal time series. PLoS ONE, 7(7), e39001.

    CrossRef  Google Scholar 

  • Vinther, F., Andersen, M., & Ottesen, J. T. (2011). The minimal model of the hypothalamic–pituitary–adrenal axis. Journal of Mathematical Biology, 63(4), 663–690.

    MathSciNet  CrossRef  Google Scholar 

  • Vis, D. J., Westerhuis, J. A., Hoefsloot, H. C., Pijl, H., Roelfsema, F., van der Greef, J., et al. (2010). Endocrine pulse identification using penalized methods and a minimum set of assumptions. American Journal of Physiology-Endocrinology And Metabolism, 298(2), E146–E155.

    CrossRef  Google Scholar 

  • Vyzas, E., & Picard, R. W. (1999). Off-line and online recognition of emotion expression from physiological data. In Proceedings of 3rd International Conference on Autonomous Agents–Workshop on Emotion-Based Agent Architectures (pp. 135–142).

    Google Scholar 

  • Walker, J. J., Spiga, F., Waite, E., Zhao, Z., Kershaw, Y., Terry, J. R., et al. (2012). The origin of glucocorticoid hormone oscillations. PLoS Biology, 10(6), e1001341.

    CrossRef  Google Scholar 

  • Walker, J., Terry, J., Tsaneva-Atanasova, K., Armstrong, S., McArdle, C., & Lightman, S. (2010). Encoding and decoding mechanisms of pulsatile hormone secretion. Journal of Neuroendocrinology, 22(12), 1226–1238.

    CrossRef  Google Scholar 

  • Wallin, B. G. (1981). Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man. Psychophysiology, 18(4), 470–476.

    CrossRef  Google Scholar 

  • Wang, X., & Balakrishnan, S. N. (2008). Optimal neuro-controller synthesis for variable-time impulse driven systems. In Proceedings of American Control Conference (pp. 3817–3822).

    Google Scholar 

  • Young, E. A., Carlson, N. E., & Brown, M. B. (2001). Twenty-four-hour ACTH and cortisol pulsatility in depressed women. Neuropsychopharmacology, 25(2), 267–276.

    CrossRef  Google Scholar 

  • Zdunek, R., & Cichocki, A. (2008). Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals. IEEE Transactions on Signal Processing, 56(10), 4752–4761.

    MathSciNet  CrossRef  Google Scholar 

Download references

Acknowledgements

This chapter summarizes and generalizes the concepts that appeared in my PhD thesis and related publications. I would like to thank my PhD advisors and all coauthors who have contributed to previously published work. Especially, I am greatly indebted to my PhD advisors Professor Emery N. Brown and Professor Munther A. Dahleh; this work would not have been possible without their guidance, depth of knowledge, and invaluable advice. I would also like to express my gratitude to Professor George Verghese, Dr. Elizabeth Klerman, and Dr. Gail Adler for very helpful conversations, and insightful feedback. I am also grateful to the National Science Foundation (NSF) for supporting this research through the NSF Graduate Research Fellowship. In honor of Professor Emery N. Brown’s 60th birthday, I would like to add that being Emery’s student and having him as a role model has always been a great honor and privilege for me; I am very lucky that I could benefit from the light of Emery’s wisdom and learn so much from him during my S.M. and Ph.D. studies as well as my postdoctoral training. He has been immensely encouraging and a great source of enthusiasm, inspiration, and positive energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rose T. Faghih .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Faghih, R.T. (2018). From Physiological Signals to Pulsatile Dynamics: A Sparse System Identification Approach. In: Chen, Z., Sarma, S.V. (eds) Dynamic Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-71976-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71976-4_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71975-7

  • Online ISBN: 978-3-319-71976-4

  • eBook Packages: EngineeringEngineering (R0)