Advertisement

From Physiological Signals to Pulsatile Dynamics: A Sparse System Identification Approach

  • Rose T. FaghihEmail author
Chapter

Abstract

Various brain signals including neuronal spiking activity have an impulsive profile that upon interactions with physiological or measurement processes lead to observed pulsatile experimental data. For example, neuroendocrine data and electrodermal activity data have a pulsatile nature. To characterize the pulsatile nature of such signals, we utilize physiological state-space models and optimization formulations that take advantage of the sparse nature of the underlying pulses. We illustrate that our methods are successful in characterizing pulsatile dynamics underlying pulsatile physiological data. In particular, we deconvolve cortisol and skin conductance data as well as concurrent cortisol and adrenocorticotropic data. Moreover, we design impulsive inputs for constant and circadian demands and holding costs on desired pulsatile profiles. Characterization of such pulsatile signals will aid our understanding of the pathological states related to these signals and has the potential to be used in designing bio-inspired pulsatile controllers; immediate applications include understanding normal and pathological neuroendocrine and affective states.

Notes

Acknowledgements

This chapter summarizes and generalizes the concepts that appeared in my PhD thesis and related publications. I would like to thank my PhD advisors and all coauthors who have contributed to previously published work. Especially, I am greatly indebted to my PhD advisors Professor Emery N. Brown and Professor Munther A. Dahleh; this work would not have been possible without their guidance, depth of knowledge, and invaluable advice. I would also like to express my gratitude to Professor George Verghese, Dr. Elizabeth Klerman, and Dr. Gail Adler for very helpful conversations, and insightful feedback. I am also grateful to the National Science Foundation (NSF) for supporting this research through the NSF Graduate Research Fellowship. In honor of Professor Emery N. Brown’s 60th birthday, I would like to add that being Emery’s student and having him as a role model has always been a great honor and privilege for me; I am very lucky that I could benefit from the light of Emery’s wisdom and learn so much from him during my S.M. and Ph.D. studies as well as my postdoctoral training. He has been immensely encouraging and a great source of enthusiasm, inspiration, and positive energy.

References

  1. Attouch, H., Bolte, J., Redont, P., & Soubeyran, A. (2010). Proximal alternating minimization and projection methods for nonconvex problems: An approach based on the kurdyka-łojasiewicz inequality. Mathematics of Operations Research, 35(2), 438–457.MathSciNetCrossRefGoogle Scholar
  2. Boufounos, P., Duarte, M. F., & Baraniuk, R. G. (2007). Sparse signal reconstruction from noisy compressive measurements using cross validation. In Proceedings of 14th IEEE Workshop on Statistical Signal Processing (SSP’07) (pp. 299–303). New York: IEEE.Google Scholar
  3. Brown, E. N., Meehan, P. M., & Dempster, A. P. (2001). A stochastic differential equation model of diurnal cortisol patterns. American Journal of Physiology-Endocrinology And Metabolism, 280(3), E450–E461.CrossRefGoogle Scholar
  4. Candes, E. J., Wakin, M. B., & Boyd, S. P. (2008). Enhancing sparsity by reweighted 1 minimization. Journal of Fourier Analysis and Applications, 14(5), 877–905.MathSciNetCrossRefGoogle Scholar
  5. Conrad, M., Hubold, C., Fischer, B., & Peters, A. (2009). Modeling the hypothalamus–pituitary–adrenal system: homeostasis by interacting positive and negative feedback. Journal of Biological Physics, 35(2), 149–162.CrossRefGoogle Scholar
  6. Dallmant, M., & Yates, F. (1969). Dynamic asymmetries in the corticosteroid feedback path and distribution metabolism-binding elements of the adrenocortical system. Annals of the New York Academy of Sciences, 156(1), 696–721.CrossRefGoogle Scholar
  7. Faghih, R. T. (2010). The FitzHugh-Nagumo model dynamics with an application to the hypothalamic pituitary adrenal axis. Master’s thesis, Massachusetts Institute of Technology.Google Scholar
  8. Faghih, R. T. (2014). System identification of cortisol secretion: Characterizing pulsatile dynamics. Ph.D. thesis, Massachusetts Institute of Technology.Google Scholar
  9. Faghih, R. T., Dahleh, M. A., Adler, G. K., Klerman, E. B., & Brown, E. N. (2014). Deconvolution of serum cortisol levels by using compressed sensing. PLoS ONE, 9(1), e85204.CrossRefGoogle Scholar
  10. Faghih, R. T., Dahleh, M. A., Adler, G. K., Klerman, E. B., & Brown, E. N. (2015a). Quantifying pituitary-adrenal dynamics and deconvolution of concurrent cortisol and adrenocorticotropic hormone data by compressed sensing. IEEE Transactions on Biomedical Engineering, 62(10), 2379–2388.CrossRefGoogle Scholar
  11. Faghih, R. T., Dahleh, M. A., & Brown, E. N. (2015b). An optimization formulation for characterization of pulsatile cortisol secretion. Frontiers in Neuroscience, 9, 228.CrossRefGoogle Scholar
  12. Faghih, R. T., Savla, K., Dahleh, M. A., & Brown, E. N. (2011). A feedback control model for cortisol secretion. In Proceedings of IEEE Conference on Engineering in Medicine and Biology Society (EMBC) (pp. 716–719). New York: IEEE.Google Scholar
  13. Faghih, R. T., Stokes, P. A., Marin, M.-F., Zsido, R. G., Zorowitz, S., Rosenbaum, B. L., et al. (2015c). Characterization of fear conditioning and fear extinction by analysis of electrodermal activity. In Proceedings of 37th IEEE Conference on Engineering in Medicine and Biology Society (EMBC) (pp. 7814–7818). New York: IEEE.Google Scholar
  14. Fazel, M. (2002). Matrix rank minimization with applications. Ph.D. thesis, Stanford University.Google Scholar
  15. Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics, 21(2), 215–223.MathSciNetCrossRefGoogle Scholar
  16. Gorodnitsky, I. F., & Rao, B. D. (1997). Sparse signal reconstruction from limited data using focuss: A re-weighted minimum norm algorithm. IEEE Transactions on Signal Processing, 45(3), 600–616.CrossRefGoogle Scholar
  17. Gupta, S., Aslakson, E., Gurbaxani, B. M., & Vernon, S. D. (2007). Inclusion of the glucocorticoid receptor in a hypothalamic pituitary adrenal axis model reveals bistability. Theoretical Biology and Medical Modelling, 4(1), 8.CrossRefGoogle Scholar
  18. Hansen, P. C. (1999). The L-curve and its use in the numerical treatment of inverse problems. IMM, Department of Mathematical Modelling, Technical University of Denmark.Google Scholar
  19. He, Z., Xie, S., & Cichocki, A. (2012). On the convergence of focuss algorithm for sparse representation. arXiv preprint arXiv:1202.5470.Google Scholar
  20. Johnson, T. D. (2003). Bayesian deconvolution analysis of pulsatile hormone concentration profiles. Biometrics, 59(3), 650–660.MathSciNetCrossRefGoogle Scholar
  21. Keenan, D. M., Chattopadhyay, S., & Veldhuis, J. D. (2005). Composite model of time-varying appearance and disappearance of neurohormone pulse signals in blood. Journal of Theoretical Biology, 236(3), 242–255.MathSciNetCrossRefGoogle Scholar
  22. Kettyle, W. M., & Arky, R. A. (1998). Endocrine pathophysiology. Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  23. Klerman, E. B., Goldenberg, D. L., Brown, E. N., Maliszewski, A. M., & Adler, G. K. (2001). Circadian rhythms of women with fibromyalgia. The Journal of Clinical Endocrinology & Metabolism, 86(3), 1034–1039.Google Scholar
  24. Kyrylov, V., Severyanova, L. A., & Vieira, A. (2005). Modeling robust oscillatory behavior of the hypothalamic-pituitary-adrenal axis. IEEE Transactions on Biomedical Engineering, 52(12), 1977–1983.CrossRefGoogle Scholar
  25. Lidberg, L., & Wallin, B. G. (1981). Sympathetic skin nerve discharges in relation to amplitude of skin resistance responses. Psychophysiology, 18(3), 268–270.CrossRefGoogle Scholar
  26. Lightman, S. L., & Conway-Campbell, B. L. (2010). The crucial role of pulsatile activity of the hpa axis for continuous dynamic equilibration. Nature Reviews Neuroscience, 11(10), 710.CrossRefGoogle Scholar
  27. Linkowski, P., Mendlewicz, J., Leclercq, R., Brasseur, M., Hubain, P., Golstein, J., et al. (1985). The 24-hour profile of adrenocorticotropin and cortisol in major depressive illness. Journal of Clinical Endocrinology & Metabolism, 61(3), 429–438.CrossRefGoogle Scholar
  28. Lobo, M. S., Fazel, M., & Boyd, S. (2007). Portfolio optimization with linear and fixed transaction costs. Annals of Operations Research, 152(1), 341–365.MathSciNetCrossRefGoogle Scholar
  29. Lönnebo, A., Grahnén, A., & Karlsson, M. O. (2007). An integrated model for the effect of budesonide on acth and cortisol in healthy volunteers. British Journal of Clinical Pharmacology, 64(2), 125–132.CrossRefGoogle Scholar
  30. McMaster, A., Jangani, M., Sommer, P., Han, N., Brass, A., Beesley, S., et al. (2011). Ultradian cortisol pulsatility encodes a distinct, biologically important signal. PLoS ONE, 6(1), e15766.CrossRefGoogle Scholar
  31. Murray, J. F. (2005). Visual recognition, inference and coding using learned sparse overcomplete representations. Ph.D. thesis, University of California, San Diego.Google Scholar
  32. Peters, A., Conrad, M., Hubold, C., Schweiger, U., Fischer, B., & Fehm, H. L. (2007). The principle of homeostasis in the hypothalamus-pituitary-adrenal system: new insight from positive feedback. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 293(1), R83–R98.CrossRefGoogle Scholar
  33. Refetoff, S., Van Cauter, E., Fang, V., Laderman, C., Graybeal, M., & Landau, R. (1985). The effect of dexamethasone on the 24-hour profiles of adrenocorticotropin and cortisol in cushing’s syndrome. Journal of Clinical Endocrinology & Metabolism, 60(3), 527–535.CrossRefGoogle Scholar
  34. Rhee, S. S., & Pearce, E. N. (2011). The endocrine system and the heart: a review. Revista Española de Cardiología (English Edition), 64(3), 220–231.CrossRefGoogle Scholar
  35. Sarabdjitsingh, R., Joëls, M., & De Kloet, E. (2012). Glucocorticoid pulsatility and rapid corticosteroid actions in the central stress response. Physiology & Behavior, 106(1), 73–80.CrossRefGoogle Scholar
  36. Savić, D., & Jelić, S. (2005). A mathematical model of the hypothalamo-pituitary-adrenocortical system and its stability analysis. Chaos, Solitons & Fractals, 26(2), 427–436.CrossRefGoogle Scholar
  37. Sethi, S. P., & Thompson, G. L. (2006). Optimal control theory: Applications to management science and economics. New York: Springer.zbMATHGoogle Scholar
  38. Spiga, F., Waite, E. J., Liu, Y., Kershaw, Y. M., Aguilera, G., & Lightman, S. L. (2011). Acth-dependent ultradian rhythm of corticosterone secretion. Endocrinology, 152(4), 1448–1457.CrossRefGoogle Scholar
  39. Stavreva, D. A., Wiench, M., John, S., Conway-Campbell, B. L., McKenna, M. A., Pooley, J. R., et al. (2009). Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nature Cell Biology, 11(9), 1093.CrossRefGoogle Scholar
  40. Ten, S., New, M., & Maclaren, N. (2001). Addison’s disease 2001. Journal of Clinical Endocrinology & Metabolism, 86(7), 2909–2922.Google Scholar
  41. Van Cauter, E. (1981). Quantitative methods for the analysis of circadian and episodic hormone fluctuations. In Human pituitary hormones (pp. 1–28). Dordrecht: Springer.CrossRefGoogle Scholar
  42. Veldhuis, J. D., Iranmanesh, A., Lizarralde, G., & Johnson, M. L. (1989). Amplitude modulation of a burstlike mode of cortisol secretion subserves the circadian glucocorticoid rhythm. American Journal of Physiology-Endocrinology And Metabolism, 257(1), E6–E14.CrossRefGoogle Scholar
  43. Vidal, A., Zhang, Q., Médigue, C., Fabre, S., & Clément, F. (2012). Dynpeak: An algorithm for pulse detection and frequency analysis in hormonal time series. PLoS ONE, 7(7), e39001.CrossRefGoogle Scholar
  44. Vinther, F., Andersen, M., & Ottesen, J. T. (2011). The minimal model of the hypothalamic–pituitary–adrenal axis. Journal of Mathematical Biology, 63(4), 663–690.MathSciNetCrossRefGoogle Scholar
  45. Vis, D. J., Westerhuis, J. A., Hoefsloot, H. C., Pijl, H., Roelfsema, F., van der Greef, J., et al. (2010). Endocrine pulse identification using penalized methods and a minimum set of assumptions. American Journal of Physiology-Endocrinology And Metabolism, 298(2), E146–E155.CrossRefGoogle Scholar
  46. Vyzas, E., & Picard, R. W. (1999). Off-line and online recognition of emotion expression from physiological data. In Proceedings of 3rd International Conference on Autonomous Agents–Workshop on Emotion-Based Agent Architectures (pp. 135–142).Google Scholar
  47. Walker, J. J., Spiga, F., Waite, E., Zhao, Z., Kershaw, Y., Terry, J. R., et al. (2012). The origin of glucocorticoid hormone oscillations. PLoS Biology, 10(6), e1001341.CrossRefGoogle Scholar
  48. Walker, J., Terry, J., Tsaneva-Atanasova, K., Armstrong, S., McArdle, C., & Lightman, S. (2010). Encoding and decoding mechanisms of pulsatile hormone secretion. Journal of Neuroendocrinology, 22(12), 1226–1238.CrossRefGoogle Scholar
  49. Wallin, B. G. (1981). Sympathetic nerve activity underlying electrodermal and cardiovascular reactions in man. Psychophysiology, 18(4), 470–476.CrossRefGoogle Scholar
  50. Wang, X., & Balakrishnan, S. N. (2008). Optimal neuro-controller synthesis for variable-time impulse driven systems. In Proceedings of American Control Conference (pp. 3817–3822).Google Scholar
  51. Young, E. A., Carlson, N. E., & Brown, M. B. (2001). Twenty-four-hour ACTH and cortisol pulsatility in depressed women. Neuropsychopharmacology, 25(2), 267–276.CrossRefGoogle Scholar
  52. Zdunek, R., & Cichocki, A. (2008). Improved M-FOCUSS algorithm with overlapping blocks for locally smooth sparse signals. IEEE Transactions on Signal Processing, 56(10), 4752–4761.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.University of HoustonHoustonUSA

Personalised recommendations