Endocrine Causes of Implantation Failure



Achieving successful implantation requires a complex endocrine stimulus of the endometrium. A deep understanding of this highly coordinated process is required for clinicians and investigators attempting to optimize an individual patient’s likelihood of success. Our current level of knowledge is the result of many elegant studies to elucidate these mechanisms. However, our tools for assessing the proper functioning of the endometrium in relation to hormonal response are limited. Modern infertility therapies that rely on gonadotropin stimulation undoubtedly change the chronology and histology of endometrium response. However, many patients achieve success despite these alterations. Patients with recurrent implantation failure, however, may be more sensitive to forces which change the normal physiologic state. Thus, careful attention to these issues in these patients is paramount. This chapter attempts to lay the groundwork for a comprehensive understanding of normal endometrial response, assess current diagnostic options and their limitations, and describe how pathological processes can disrupt normal implantation.


Endometrium Reproductive endocrinology Endometrial histology Luteal phase deficiency Frozen embryo transfer Recurrent implantation failure Subclinical hypothyroidism 


  1. 1.
    Treloar AE, Boynton RE, Begn BG, Brown BW. Variation of the human menstrual cycle through reproductive life. Int J Fertil. 1967;12:77–126.PubMedGoogle Scholar
  2. 2.
    Rock J, Bartlett MK. Biopsy studies of human endometrium. JAMA. 1937;108(24):2022–8.CrossRefGoogle Scholar
  3. 3.
    Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25.CrossRefGoogle Scholar
  4. 4.
    Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K, Zeng D, Fritz MA. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril. 2004;81:1333–43.CrossRefPubMedGoogle Scholar
  5. 5.
    Scott RT, Snyder RR, Strickland DM, Tyburski CC, Bagnall JA, Reed KR, Adair CA, Hensley SB. The effect of interobserver variation in dating endometrial histology of the diagnosis of luteal phase defects. Fertil Steril. 1988;50:888–92.CrossRefPubMedGoogle Scholar
  6. 6.
    Smith S, Hosid S, Scott L. Endometrial biopsy dating. Interobserver variation and its impact on clinical practice. J Reprod Med. 1995;76:782–91.Google Scholar
  7. 7.
    Deglidisch L. Hormonal pathology of the endometrium. Mod Pathol. 2000;13:285–94.CrossRefGoogle Scholar
  8. 8.
    Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, Schlaff WD, Carr BR, Steinkampf MP, Silva S, Vogel DL, Leppert PC. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004;82:1264–72.CrossRefPubMedGoogle Scholar
  9. 9.
    Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, Salamonsen LA, Rombauts LJF, Hincks C, Rombauts LJ, Salamonsen LA. Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;0:1–14.Google Scholar
  10. 10.
    Horcajadas JA, Riesewijk A, Polman J, van Os R, Pellicer A, Mosselman S, Simon C. Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles. Mol Hum Reprod. 2005;11:195–205.CrossRefPubMedGoogle Scholar
  11. 11.
    Van Vaerenbergh I, Van Lommel L, Ghislain V, In’t Veld P, Schuit F, Fatemi HM, Devroey P, Bourgain C. In GnRH antagonist/rec-FSH stimulated cycles, advanced endometrial maturation on the day of oocyte retrieval correlates with altered gene expression. Hum Reprod. 2009;24:1085–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Li R, Qiao J, Wang L, Li L, Zhen X, Liu P, Zheng X. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol. 2011;9:29.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kolibianakis EM, Bourgain C, Papanikolaou EG, Camus M, Tournaye H, Van Steirteghem AC, Devroey P. Prolongation of follicular phase by delaying hCG administration results in higher incidence of endometrial advancement on the day of oocyte retrieval in GnRH antagonist cycles. Hum Reprod. 2005;20:2453–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Ubaldi F, Bourgain C, Tournaye H, Smitz J, Van Steirteghem A, Devroey P. Endometrial evaluation by aspiration biopsy on the day of oocyte retrieval in the embryo transfer cycles in patients with serum progesterone rise during the follicular phase. Fertil Steril. 1997;67:521–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Yang S, Pang T, Li R, Yang R, Zhen X, Chen X, Wang H, Ma C, Liu P, Qiao J. The individualized choice of embryo transfer timing for patients with elevated serum progesterone level on the HCG day in IVF/ICSI cycles: a prospective randomized clinical study. Gynecol Endocrinol. 2015;31(5):355–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Marchini M, Fedele L, Bianchi S, Losa GA, Ghisletta M, Gandiani GB. Secretory changes in preovulatory during controlled ovarian hyperstimulation with buserelin acetate and human gonadotropins. Fertil Steril. 1991;55:717–21.CrossRefPubMedGoogle Scholar
  18. 18.
    Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A. 2003;100:2963–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, Yang J, Liu J, Wei D, Weng N, Tian L, Hao C, Yang D, Zhou F, Shi J, Xu Y, Li J, Yan J, Qin Y, Zhao H, Zhang H, Legro R. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375:523–33.CrossRefPubMedGoogle Scholar
  20. 20.
    Chen HC, Zhang X, Barnes R, Confino E, Milad M, Puscheck E, Kazer R. Relationship between peak serum estradiol levels and treatment outcome in in vitro fertilization cycles after embryo transfer on day 3 or day 5. Fertil Steril. 2003;80:75–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Levi AJ, Drews MR, Bergh PA, Miller BT, Scott RT Jr. Controlled ovarian hyperstimulation does not adversely affect endometrial receptivity in in vitro fertilization cycles. Fertil Steril. 2001;76(4):670.CrossRefPubMedGoogle Scholar
  22. 22.
    Papageorgiou T, Guibert J, Goffinet F, Patrat C, Fulla Y, Janssens Y, Zorn AR. Percentile curves of serum estradiol levels during controlled ovarian stimulation in 905 cycles stimulated with recombinant FSH show that high estradiol is not detrimental to IVF outcome. Hum Reprod. 2001;17:2846–50.CrossRefGoogle Scholar
  23. 23.
    Hancke K, More S, Kreienberg R, Weiss JM. Patients undergoing frozen-thawed embryo transfer have similar live birth rates in spontaneous and artificial cycles. J Assist Reprod Genet. 2012;29:403–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tomax C, Alsbjerg B, Martikainen H, Humaidan P. Pregnancy loss after frozen-embryo transfer – a comparison of three protocols. Fertil Steril. 2012;98:1165–9.CrossRefGoogle Scholar
  25. 25.
    Ghobara T, Vandekerckhove P. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev. 2008;7:CD003414.Google Scholar
  26. 26.
    Groenewoud ER, Cantineau AEP, Kollen BJ, Mackon NS, Cohlen BJ. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. Hum Reprod Update. 2013;19:458–70.CrossRefPubMedGoogle Scholar
  27. 27.
    Cattoli M. A randomized prospective study on cryopreserved-thawed embryo transfer: natural versus hormone replacement cycles. Abstracts of the 10th Annual Meeting of the ESHRE Brussels 1994;356:139.Google Scholar
  28. 28.
    Mounce G, McVeigh E, Turner K, Child TJ. Randomized, controlled pilot trial of natural versus hormone replacement therapy cycles in frozen embryo replacement in vitro fertilization. Fertil Steril. 2015;104:915–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Greco E, Litwicka K, Arrivi C, Varrichio MT, Caragia A, Greco A, Minasi MG, Fiorentino G. The endometrial preparation for frozen thawed euploid blastocyst transfer: a prospective randomized trial comparing clinical results from natural modified cycle with exogenous hormone stimulation with GnRH agonist. J Assist Reprod Genet. 2016;33:873–84.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Baird DD, Weinberg CR, Wilcox AJ, McConnaughey DR, Musey PL, Collins DC. Hormonal profiles of natural conception cycles in ending in early, unrecognized pregnancy loss. New Engl J Med. 1999;340:1796–9. Nonsupplemented luteal phase characteristics after the administration of recombinant human chorionic gonadotropin, recombinant luteinizing hormone, or gonadotropin-releasing hormone (GnRH) agonist to induce final oocyte maturation in in vitro fertilization patients after ovarian stimulation with recombinant follicle-stimulating hormone and GnRH antagonist cotreatment. J Clin Endocrinol Metab. 2003;88(9):4186–92CrossRefPubMedGoogle Scholar
  31. 31.
    Jones GES. Some newer aspects of management of infertility. JAMA. 1949;141:1123–9.CrossRefGoogle Scholar
  32. 32.
    Speroff L, Fritz MA. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2014.Google Scholar
  33. 33.
    Filicori M, Butler JP, Crowley WF Jr. Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsatile progesterone secretion. J Clin Invest. 1984;73:1638–47.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Davis OK, Berkeley AS, Naus GJ, Cholst IN, Freedman KS. The incidence of luteal phase defect in normal, fertile women, determine by serial endometrial biopsies. Fertil Steril. 1989;51:582–56.CrossRefPubMedGoogle Scholar
  35. 35.
    Usadi RS, Groll JM, Lessey BA, Lininger RA, Zaino RJ, Fritz MA. Endometrial development and function in experimentally induced luteal phase deficiency. J Clin Endocrinol Metab. 2008;93:4058–64.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Mitwally MF, Diamond MP, Abuzeid M. Vaginal micronized progesterone versus intramuscular progesterone for luteal support in women undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2010;93(20):554–69.Google Scholar
  37. 37.
    American Society for Reproductive Medicine Practice Committee. Current clinical irrelevance of luteal phase deficiency: a committee opinion. Fertil Steril. 2015;103:327–e32.Google Scholar
  38. 38.
    Pritts EA, Atwood AK. Luteal phase support in infertility treatment: a meta-analysis of the randomized trials. Hum Reprod. 2002;17:2287–99.CrossRefPubMedGoogle Scholar
  39. 39.
    Beckers NG, Latteau P, Eijkemans MJ, Macklon NS, de Jong FH, Devroey P, Fauser BC. The early luteal phase administration of estrogen and progesterone does not induce premature luteolysis in normo-ovulatory women. Eur J Endocrinol. 2006;1559(2):355–63.Google Scholar
  40. 40.
    Daya S, Gunby J. Luteal phase support in assisted reproduction cycles. Cochrane Database Syst Rev. 2004;10:CD004830.Google Scholar
  41. 41.
    Aghajanova L, Stavreus-Evers A, Lindeberg M, Landgren BM, Skjoldebrand Sparre L, Hovatta O. Thyroid-stimulating hormone receptor and thyroid hormone-receptors are involved in human endometrial physiology. Fertil Steril. 2011;95:230–7.CrossRefPubMedGoogle Scholar
  42. 42.
    Catalano RD, Critchley HO, Heikinheimo O, Baird DT, Hapangama D, Sherwin JRA, Charnock-Jones DS, Smith SK, Sharkey AM. Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in the human endometrium. Mol Hum Reprod. 2007;13:641–54.CrossRefPubMedGoogle Scholar
  43. 43.
    Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update. 2014;20(6):884–904.CrossRefPubMedGoogle Scholar
  44. 44.
    Scoccia B, Demir H, Kang Y, Fierro MA, Winston NJ. In vitro fertilization pregnancy rates in levothyroxine-treated women with hypothyroidism compared to women without thyroid dysfunction disorders. Thyroid. 2012;22:631–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ashkar FA, Semple E, Schmidt CH, St John E, Bartlewski PM, King WA. Thyroid hormone supplementation improves bovine embryo development in vitro. Hum Reprod. 2010;25:334–44.CrossRefPubMedGoogle Scholar
  46. 46.
    Costa NN, Cordeiro MS, Silva TV, Sastre D, Santana PP, Sa AL, Sampaio RV, Santos SS, Adona PR, Miranda MS. Effect of triiodothyronine on developmental competence of bovine oocytes. Theriogenology. 2013;80:295–301.CrossRefPubMedGoogle Scholar
  47. 47.
    Laoag-Fernandez JB, Matsuo H, Murakoshi H, Hamada AL, Tsang BK, Maruo T. 3,5,3′-Triiodothyronine down-regulates Fas and Fas ligand expression and suppresses caspase-3 and poly (adenosine 5′-diphosphate-ribose) polymerase cleavage and apoptosis in early placental extravillous trophoblasts in vitro. J Clin Endocrinol Metab. 2004;89:4069–77.CrossRefPubMedGoogle Scholar
  48. 48.
    Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev. 2010;31:702–55.CrossRefPubMedGoogle Scholar
  49. 49.
    Vissenberg R, van den Boogaard E, van Wely M, van der Post JA, Filers E, Bisschop PH, Goddijn M. Treatment of thyroid disorders before conception and in early pregnancy: a systematic review. Hum Reprod Update. 2012;18:360–73.CrossRefPubMedGoogle Scholar
  50. 50.
    Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489–99.CrossRefPubMedGoogle Scholar
  51. 51.
    National Academy of Clinical Biochemistry. Laboratory medicine practice guidelines. Laboratory support for the diagnosis of thyroid disease, vol. 13. Washington, DC: The National Academy of Clinical Biochemistry; 2002.Google Scholar
  52. 52.
    American Society for Reproductive Medicine Practice Committee. Subclinical hypothyroidism in the infertile female population: a guideline. Fertil Steril. 2015;104:545–53.CrossRefGoogle Scholar
  53. 53.
    De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, Eastman CJ, Lazarus JH, Luton D, Mandel SJ, Mestman J, Rovet J, Sullivan S. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:2543–65.CrossRefPubMedGoogle Scholar
  54. 54.
    Kim CH, Ahn JW, Kang SP, Kim SH, Chae HD, Kang BM. Effect of levothyroxine treatment on in vitro fertilization and pregnancy outcome in infertile women with subclinical hypothyroidism undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2011;95(5):1650–4.CrossRefPubMedGoogle Scholar
  55. 55.
    Abdel Rahman AH, Aly Abbassy H, Abbassy AA. Improved in vitro fertilization outcomes after treatment of subclinical hypothyroidism in infertile women. Endocr Pract. 2010;16:792–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Negro R, Mangieri T, Coppola L, Presicce G, Casavola EC, Gismondi R, Locorotondo G, Caroli P, Pezzarossa A, Dazzi D, Hassan H. Levothyroxine treatment in thyroid peroxidase antibody-positive women undergoing assisted reproduction technologies: a prospective study. Hum Reprod. 2005;20:1529–33.CrossRefPubMedGoogle Scholar
  57. 57.
    van den Boogaard E, Vissenberg R, Land JA, van Wely M, van der Post JA, Goddijn M, Bisschop PH. Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum Reprod Update. 2011;17:605–19.CrossRefPubMedGoogle Scholar
  58. 58.
    Negro R, Schwartz A, Gismondi R, Tinelli A, Mangieri T, Stagnaro-Green A. Increased pregnancy loss rate in thyroid antibody negative women with TSH levels between 2.5 and 5.0 in the first trimester of pregnancy. J Clin Endocrinol Metab. 2010;95:E44–8.CrossRefPubMedGoogle Scholar
  59. 59.
    Fox C, Morin S, Jeong JW, Scott RT Jr, Lessey BA. Local and systemic factors and implantation: what is the evidence? Fertil Steril. 2016;105:873–84.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Sidney Kimmel Medical CollegeThomas Jefferson University PhiladelphiaPhiladelphiaUSA
  2. 2.IVI-RMA of New JerseyBasking RidgeUSA
  3. 3.Department of Obstetrics and GynecologyKoc University School of MedicineIstanbulTurkey
  4. 4.Department of Obstetrics Gynecology and Reproductive SciencesYale School of MedicineNew HavenUSA

Personalised recommendations